0000000001170976
AUTHOR
Hans-georg Neumann
Biocompatibility studies of endothelial cells on a novel calcium phosphate/SiO 2 -xerogel composite for bone tissue engineering
The bone biomaterial BONITmatrix®, a nanoporous, granular scaffold composed of hydroxylapatite, calcium phosphate and SiO2, linked by a dense collagen mesh, was tested for its biocompatibility using endothelial cells (EC) in the form of macrovascular HUVEC, microvascular HDMEC and the endothelial cell line ISOHAS-1. Cells were examined for their adherence and growth on the biomaterial and this was followed by confocal laser scanning microscopy after vital staining or immunocytochemical reactions, as well as by scanning electron microscopy. Macro- and microvascular ECs predominantly spread on BONITmatrix®-collagen mesh-covered surfaces and fibres and maintained their typical morphology. As E…
Endothelial cells stimulate osteogenic differentiation of mesenchymal stem cells on calcium phosphate scaffolds
The interaction of mesenchymal stem cells (MSCs) with endothelium in vivo is significant for regenerative processes in organisms. To design concepts for tissue engineering for bone regeneration based on this interaction, the osteogenic differentiation of human bone marrow-derived MSCs in a co-culture with human dermal microvascular endothelial cells (HDMECs) was studied. The experiments were focussed on the regulation of MSCs in a co-culture with HDMECs on different calcium phosphate scaffolds. Alkaline phosphatase (ALP) activity and mRNA expression of various osteogenic markers increased significantly when cells were co-cultured on materials with calcium phosphate scaffolds compared to tis…