0000000001172956
AUTHOR
Carlos Guerrero Sánchez
Radiative neutron capture on 242Pu in the resonance region at the CERN n_TOF-EAR1 facility
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of 242Pu there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluat…
Recent results in nuclear astrophysics at the n_TOF facility at CERN
The neutron time of flight (n_TOF) facility at CERN is a spallation source characterized by a white neutron spectrum. The innovative features of the facility, in the two experimental areas, (20 m and 185 m), allow for an accurate determination of the neutron cross section for radioactive samples or for isotopes with small neutron capture cross section, of interest for Nuclear Astrophysics. The recent results obtained at n_TOF facility are presented.
Thermal (n, γ) cross section and resonance integral of 171Tm
Background: About 50% of the heavy elements are produced in stars during the slow neutron capture process. The analysis of branching points allows us to set constraints on the temperature and the neutron density in the interior of stars. Purpose: The temperature dependence of the branch point 171Tm is weak. Hence, the 171Tm neutron capture cross section can be used to constrain the neutron density during the main component of the s process in thermally pulsing asymptotic giant branch (TP-AGB) stars. Methods: A 171Tm sample produced at the ILL was activated with thermal and epithermal neutrons at the TRIGA research reactor at the Johannes Gutenberg-Universität Mainz. Results: The thermal neu…
Measurement and analysis of the 241 Am neutron capture cross section at the n_TOF facility at CERN
The 241 Am ( n , γ ) cross section has been measured at the n_TOF facility at CERN with the n_TOF BaF 2 Total Absorption Calorimeter in the energy range between 0.2 eV and 10 keV. Our results are analyzed as resolved resonances up to 700 eV, allowing a more detailed description of the cross section than in the current evaluations, which contain resolved resonances only up to 150–160 eV. The cross section in the unresolved resonance region is perfectly consistent with the predictions based on the average resonance parameters deduced from the resolved resonances, thus obtaining a consistent description of the cross section in the full neutron energy range under study. Below 20 eV, our results…
Nuclear data activities at the n TOF facility at CERN
Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries…
New measurement of the 242Pu(n,γ) cross section at n_TOF
WONDER-2015 – 4th International Workshop On Nuclear Data Evaluation for Reactor applications The use of MOX fuel (mixed-oxide fuel made of UO2 and PuO2) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. With the use of such new fuel composition rich in Pu, a better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United States (ENDF) nuclear data agencies. For the case of 242Pu, the two only neutron capture time-of-flight measurements available, from 19…
Measurement of the U 238 (n,γ) cross section up to 80 keV with the total absorption calorimeter at the CERN n-TOF facility
The radiative capture cross section of a highly pure (99.999%), 6.125(2) grams and 9.56(5)× 10−4 atoms/barn areal density 238U sample has been measured with the Total Absorption Calorimeter (TAC) in the 185 m flight path at the CERN neutron time-of-flight facility n_TOF. This measurement is in response to the NEA High Priority Request list, which demands an accuracy in this cross section of less than 3% below 25 keV. These data have undergone careful background subtraction, with special care being given to the background originating from neutrons scattered by the 238U sample. Pileup and dead-time effects have been corrected for. The measured cross section covers an energy range between 0.2 …