0000000001173231

AUTHOR

Emanuela Martelli

Conceptual design of the main Ancillary Systems of the ITER Water Cooled Lithium Lead Test Blanket System

Abstract The Water Cooled Lithium Lead Test Blanket System (WCLL TBS) is one of the EU Test Blanket Systems candidate for being installed and operated in ITER. In view of its Conceptual Design Review by F4E and ITER Organization (IO), planned for mid-September 2020, several technical activities have been performed in the areas of WCLL TBS Ancillary Systems design. In this article the outcomes of the conceptual design phase of the four main Ancillary Systems of WCLL TBS, namely the Water Cooling System (WCS), the Coolant Purification System (CPS), the PbLi loop and the Tritium Extraction System (TES), are reported and critically discussed. In particular, for each Ancillary System hereafter a…

research product

Status of EU DEMO heat transport and power conversion systems

Abstract DEMO in Europe is considered to be the nearest-term reactor design to follow ITER and capable of demonstrating production of electricity, operating with a closed fuel-cycle and to be a facilitating machine between ITER and a commercial reactor. The aim of this paper is to show the design progress of the complex system’s “chain” devoted to the extraction of the plasma generated pulsed thermal power and its conversion into electricity delivered to the grid, including the Primary Heat Transport System (PHTS), the Power Conversion System (PCS) and the Intermediate Heat Transport System (IHTS) – provided by an Energy Storage System (ESS) – in between PHTS and PCS, which is introduced fo…

research product

On the impact of the heat transfer modelling approach on the prediction of EU-DEMO WCLL breeding blanket thermal performances

Abstract The Water-Cooled Lithium-Lead Breeding Blanket is a key component of a fusion power plant, in charge of ensure Tritium production, shield Vacuum Vessel and magnets and remove the heat power deposited by radiation and particles arising from plasma. The last function is fulfilled by First Wall and Breeding Zone independent cooling systems. Several layouts of BZ coolant system have been investigated in the last years to identify a configuration that might guarantee EUROFER temperature below the limit (550 °C) and good thermal-hydraulic performances (i.e. water outlet temperature of 328 °C). A research activity is conducted to study and compare different modelling approaches to simulat…

research product

Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project

The water-cooled lithium-lead breeding blanket is in the pre-conceptual design phase. It is a candidate option for European DEMO nuclear fusion reactor. This breeding blanket concept relies on the liquid lithium-lead as breeder-multiplier, pressurized water as coolant and EUROFER as structural material. Current design is based on DEMO 2017 specifications. Two separate water systems are in charge of cooling the first wall and the breeding zone: thermo-dynamic cycle is 295–328 °C at 15.5 MPa. The breeder enters and exits from the breeding zone at 330 °C. Cornerstones of the design are the single module segment approach and the water manifold between the breeding blanket box and the back suppo…

research product

Pre-conceptual design of EU DEMO balance of plant systems: Objectives and challenges

Abstract The European Research Roadmap to the Realisation of Fusion Energy foresees that the DEMO reactor is going to succeed ITER in the pathway towards the exploitation of nuclear fusion, achieving long plasma operation time, demonstrating tritium self-sufficiency and producing net electric output on an industrial scale. Therefore, its design must be more oriented towards the Balance of Plant (BoP) than it is in ITER. Since the early pre-conceptual phase of the DEMO project, emphasis has been laid on identifying the main requirements affecting the overall architecture of the BoP. For instance, specific efforts and proper solutions have been envisaged to cope with the pulsed nature of the …

research product

Parametric study of the influence of double-walled tubes layout on the DEMO WCLL breeding blanket thermal performances

Abstract Within the framework of the EUROfusion activities regarding the EU-DEMO Breeding Blanket (BB) concept, the University of Palermo is long-time involved, in close cooperation with ENEA, in the design of the Water Cooled Lithium Lead (WCLL) BB, that is one of the two concepts under consideration for the DEMO reactor. It is mainly characterized by a liquid lithium-lead eutectic alloy acting as breeder and neutron multiplier, as well as by subcooled pressurized water flowing as coolant under PWR-like conditions (pressure of 15.5 MPa and inlet/outlet temperatures of 295 °C/328 °C). A research campaign has been recently carried out to study the potential influence of the Breeding Zone coo…

research product

Advancements in DEMO WCLL breeding blanket design and integration

Summary The water-cooled lithium–lead breeding blanket is a candidate option for the European Demonstration Power Plant (DEMO) nuclear fusion reactor. This breeding blanket concept relies on the liquid lithium–lead as breeder–multiplier, pressurized water as coolant, and EUROFER as structural material. The current design is based on DEMO 2015 specifications and represents the follow-up of the design developed in 2015. The single-module-segment approach is employed. This is constituted by a basic geometry repeated along the poloidal direction. The power is removed by means of radial–toroidal (i.e., horizontal) water cooling tubes in the breeding zone. The lithium–lead flows in a radial–poloi…

research product

WCLL breeding blanket design and integration for DEMO 2015: status and perspectives

Abstract Water-cooled lithium-lead breeding blanket is considered a candidate option for European DEMO nuclear fusion reactor. ENEA and the linked third parties have proposed and are developing a multi-module blanket segment concept based on DEMO 2015 specifications. The layout of the module is based on horizontal (i.e. radial-toroidal) water-cooling tubes in the breeding zone, and on lithium lead flowing in radial-poloidal direction. This design choice is driven by the rationale to have a modular design, where a basic geometry is repeated along the poloidal direction. The modules are connected with a back supporting structure, designed to withstand thermal and mechanical loads due to norma…

research product

Advancements in DEMO WCLL breeding blanket design and integration

The water-cooled lithium-lead breeding blanket is a candidate option for the European Demonstration Power Plant (DEMO) nuclear fusion reactor. This breeding blanket concept relies on the liquid lithium-lead as breeder-multiplier, pressurized water as coolant, and EUROFER as structural material. The current design is based on DEMO 2015 specifications and represents the follow-up of the design developed in 2015. The single-module-segment approach is employed. This is constituted by a basic geometry repeated along the poloidal direction. The power is removed by means of radial-toroidal (i.e., horizontal) water cooling tubes in the breeding zone. The lithium-lead flows in a radial-poloidal dire…

research product

Progress in EU Breeding Blanket design and integration

Abstract In Europe (EU), in the frame of the EUROfusion consortium activities, four Breeding Blanket (BB) concepts are being developed with the aim of fulfilling the performances required by a near-term fusion power demonstration plant (DEMO) in terms of tritium self-sufficiency and electricity production. The four blanket options cover a wide range of technological possibilities, as water and helium are considered as possible coolants and solid ceramic breeder in combination with beryllium and PbLi as tritium breeder and neutron multipliers. The strategy for the BB selection and operation has to account for the challenging schedule of the EU DEMO, the ambitious operational requirements of …

research product

Recent Progress in the WCLL Breeding Blanket Design for the DEMO Fusion Reactor

The water-cooled lithium-lead (PbLi) breeding blanket is one of the candidate systems considered for the implementation in the European Demonstration Power Plant (DEMO) nuclear fusion reactor. This concept employs PbLi liquid metal as tritium breeder and neutron multiplier, water pressurized at 15.5 MPa as the coolant, and EUROFER as the structural material. The current design is based on the single module segment approach and follows the requirements of the DEMO-2015 baseline design. The module is constituted by a basic toroidal-radial cell that is recursively repeated along the poloidal direction where the liquid metal flows along a radial-poloidal path. The heat generated by the fusion r…

research product