0000000001174482

AUTHOR

Tomoko Ariga

showing 16 related works from this author

T2K neutrino flux prediction

2013

The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axismuon neutrino beam with a peak energy of about 0.6 GeV that originates at the Japan Proton Accelerator Research Complex accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector-Super-Kamiokande-located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3-based simulation models the physical processes involved in the neutrino producti…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical Phenomenaddc:500.2Antiprotons01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsPions0103 physical sciencesMomentum rangeMuon neutrino010306 general physicsNeutrino oscillationNuclear ExperimentQCPhysicsGev-c010308 nuclear & particles physicsParticle-productionHigh Energy Physics::PhenomenologyT2K experimentFísicaDetectorMonitorSolar neutrino problemNucleiNeutrino detector13. Climate actionMeasurements of neutrino speedPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrinoProtonsAbsorption cross-sectionsParticle Physics - Experiment
researchProduct

Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector

2012

Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The …

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutrino oscillationPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical Phenomenaon-axis near detectorFOS: Physical sciencesddc:500.201 natural sciences7. Clean energyNeutrino oscillation; on-axis near detectorneutrino oscillation; neutrino detector; wavelength shifting fiber; t2k; extruded scintillator; neutrino beamNeutrino detectorNuclear physicsNeutrino beamneutrino beam0103 physical sciencesExtruded scintillatorMuon neutrinoneutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationInstrumentationT2KPhysicst2k010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyNeutrino oscillation; T2K; Neutrino beam; Neutrino detector; Extruded scintillator; Wavelength shifting fiberT2K experimentextruded scintillatorFísicaInstrumentation and Detectors (physics.ins-det)Neutrino detectorneutrino detectorWavelength shiftingfiberMeasurements of neutrino speedPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrinoBeam (structure)Leptonwavelength shifting fiber
researchProduct

The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment.

2014

The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (M…

Physics::Instrumentation and Detectorsfar detectorkaukoputket ja teleskoopit7. Clean energyviolation [CP]CP violation; Neutrino Detectors and Telescopes; Oscillation; Nuclear and High Energy PhysicsHigh Energy Physics - Phenomenology (hep-ph)Observatorymass: hierarchy [neutrino]detector [neutrino]QCPhysicsTime projection chamberLarge Hadron ColliderOscillationmagnetization [iron]oscillation [neutrino]High Energy Physics - PhenomenologyCP violationliquid argon [time projection chamber]CP violationNeutrinoParticle physicsNuclear and High Energy PhysicsCERN Lab530 PhysicseducationFOS: Physical sciencesddc:500.2oscillation [flavor]114 Physical sciencesNuclear physicsphase spacenear detectorstatistical analysisiron [calorimeter]Particle Physics - PhenomenologyAstroparticle physicsNeutrino Detectors and Telescopesta114Físicaflavor [neutrino]CP [phase]CERN SPSMODELproposed [observatory]Oscillation13. Climate actionPhase space[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]gas [argon]beam [neutrino]High Energy Physics::ExperimentMATTERneutrino detectorsCP violation.
researchProduct

Studying neutrinos at the LHC: FASER and its impact to the cosmic-ray physics

2021

Studies of high energy proton interactions have been basic inputs to understand the cosmic-ray spectra observed on the earth. Yet, the experimental knowledge with controlled beams has been limited. In fact, uncertainties of the forward hadron production are very large due to the lack of experimental data. The FASER experiment is proposed to measure particles, such as neutrinos and hypothetical dark-sector particles, at the forward location of the 14 TeV proton-proton collisions at the LHC. As it corresponds to 100-PeV proton interactions in fixed target mode, a precise measurement by FASER would provide information relevant for PeV-scale cosmic rays. By studying three flavor neutrinos with …

PhysicsAstrophysics and AstronomyParticle physicsLarge Hadron ColliderPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyHigh Energy Physics::ExperimentCosmic rayNeutrinoProceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)
researchProduct

Observation of Electron Neutrino Appearance in a Muon Neutrino Beam

2014

The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3$\sigma$ when compared to 4.92 $\pm$ 0.55 expected background events. In the PMNS mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles $\theta_{12}$, $\theta_{23}$, $\theta_{13}$, a mass difference $\Delta m^2_{32}$ and a CP violating phase $\delta_{\mathrm{CP}}$. In this neutrino oscillation scenario, assuming $…

General PhysicsParticle physicsSolar neutrinoPhysics MultidisciplinaryFOS: Physical sciencesGeneral Physics and Astronomy7. Clean energy09 EngineeringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Tau neutrino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino oscillation01 Mathematical SciencesPhysicsScience & Technology02 Physical Scienceshep-exPhysicsHigh Energy Physics::PhenomenologyT2K experimentFísicaSolar neutrino problemNeutrino detectorT2K CollaborationPhysical SciencesMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino
researchProduct

Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam

2011

The T2K experiment observes indications of $\nu_\mu\rightarrow \nu_e$ appearance in data accumulated with $1.43\times10^{20}$ protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with $|\Delta m_{23}^2|=2.4\times10^{-3}$ eV$^2$, $\sin^2 2\theta_{23}=1$ and $\sin^2 2\theta_{13}=0$, the expected number of such events is 1.5$\pm$0.3(syst.). Under this hypothesis, the probability to observe six or more candidate events is 7$\times10^{-3}$, equivalent to 2.5$\sigma$ significance. At 90% C.L., the data are consistent with 0.03(0.04)$<\sin^2 2\theta_{13}<$ 0.28(0.34) for $\delta_{\rm CP}=0$ and a normal (inverted) hierarchy.

Particle physicsFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2CHOOZ01 natural sciencesParticle identificationHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)neutrino14.60.Pq 13.15.+g 25.30.Pt 95.55.Vj0103 physical sciencesneutrino oscillationMuon neutrino[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)ComputingMilieux_MISCELLANEOUSPhysicsNOνATribimaximal mixinghep-ex010308 nuclear & particles physicsT2K experimentFísicaT2K Collaborationparticle identificationElectron neutrinoexperimental resultsPhysical Review Letters
researchProduct

First Muon-Neutrino Disappearance Study with an Off-Axis Beam

2012

We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment. With data corresponding to 1.43 × 10(20) protons on target, we observe 31 fully-contained single μ-like ring events in Super-Kamiokande, compared with an expectation of 104 ± 14(syst) events without neutrino oscillations. The best-fit point for two-flavor νμ → ντ oscillations is sin 2(2θ(23)) = 0.98 and |Δm(2)(32)| = 2.65 × 10(−3) eV2. The boundary of the 90% confidence region includes the points (sin2 (2θ(23)), |Δm(2)(32)|) = (1.0, 3.1 × 10(−3) eV2), (0.84, …

Nuclear and High Energy Physics530 PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.27. Clean energy01 natural sciencesNeutrino scatteringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrino010306 general physicsNeutrino oscillationQCPhysics010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyT2K experimentFísicaPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentBeam (structure)
researchProduct

Precise measurement of the neutrino mixing parameter θ23 from muon neutrino disappearance in an off-axis beam

2014

New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta_{23}. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10^{20} protons on target, T2K has fit the energy-dependent nu_mu oscillation probability to determine oscillation parameters. Marginalizing over the values of other oscillation parameters yields sin^2 (theta_{23}) = 0.514 +0.055/-0.056 (0.511 +- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m^2_{32} = (2.51 +- 0.10) x 10^{-3} eV^2/c^4 (inverted hierarchy: Delta m^2_{13} = (2.48 +- 0.10) …

Particle physicsGeneral PhysicsPhysics MultidisciplinaryMODELSGeneral Physics and AstronomyFOS: Physical sciencesMASS01 natural sciences09 EngineeringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SCATTERINGMuon neutrino010306 general physicsNeutrino oscillationDETECTORMixing (physics)01 Mathematical SciencesPhysicsNeutronsScience & Technology02 Physical Sciences010308 nuclear & particles physicsScatteringOscillationhep-exPhysicsFísicaT2K CollaborationPhysical SciencesSYMMETRIESHigh Energy Physics::ExperimentNeutrinoHigh energy physics Mixing Parameter estimation Parameter extractionConfidence limit Energy dependent Neutrino oscillations Off-axis neutrino beam Oscillation parameters Oscillation probabilities Precise measurements Statistical uncertaintyBeam (structure)Energy (signal processing)
researchProduct

Measurement of the neutrino-oxygen neutral-current interaction cross section by observing nuclear deexcitation gamma rays

2014

We report the first measurement of the neutrino-oxygen neutral-current quasielastic (NCQE) cross section. It is obtained by observing nuclear deexcitation $\gamma$-rays which follow neutrino-oxygen interactions at the Super-Kamiokande water Cherenkov detector. We use T2K data corresponding to $3.01 \times 10^{20}$ protons on target. By selecting only events during the T2K beam window and with well-reconstructed vertices in the fiducial volume, the large background rate from natural radioactivity is dramatically reduced. We observe 43 events in the $4-30$ MeV reconstructed energy window, compared with an expectation of 51.0, which includes an estimated 16.2 background events. The background …

Nuclear and High Energy PhysicsCherenkov detectorPhysics::Instrumentation and DetectorsC-12FOS: Physical sciencesAstronomy & Astrophysicslaw.inventionHigh Energy Physics - ExperimentPhysics Particles & FieldsNuclear physicsSUPER-KAMIOKANDE DETECTORCross section (physics)High Energy Physics - Experiment (hep-ex)lawEXCITATIONABSORPTION[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SCATTERINGO-16Nuclear ExperimentPhysicsCALIBRATIONScience & TechnologyNeutral currenthep-exPhysicsGamma rayT2K experimentFísica3. Good healthPhysical SciencesNeutrinoWEAKFiducial markerBeam (structure)
researchProduct

Measurement of the Inclusive NuMu Charged Current Cross Section on Carbon in the Near Detector of the T2K Experiment

2013

T2K has performed the first measurement of nu(mu) inclusive charged current interactions on carbon at neutrino energies of similar to 1 GeV where the measurement is reported as a flux-averaged double differential cross section in muon momentum and angle. The flux is predicted by the beam Monte Carlo and external data, including the results from the NA61/SHINE experiment. The data used for this measurement were taken in 2010 and 2011, with a total of 10.8 x 10(19) protons-on-target. The analysis is performed on 4485 inclusive charged current interaction candidates selected in the most upstream fine-grained scintillator detector of the near detector. The flux-averaged total cross section is (…

Nuclear and High Energy PhysicsHigher educationPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaNeutrino reactionsLibrary scienceFOS: Physical sciencesddc:500.201 natural sciences7. Clean energyNeutrino scatteringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Early career010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsbusiness.industry4. EducationNuclear TargetsT2K experimentFísicaRussian federationChristian ministryAngular dependenceHigh Energy Physics::Experimentbusiness
researchProduct

The T2K Experiment

2011

The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {\theta}_{13} by observing {\nu}_e appearance in a {\nu}_{\mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {\Delta}m^{2}_{23} and sin^{2} 2{\theta}_{23}, via {\nu}_{\mu} disappearance studies. Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande)…

Nuclear and High Energy PhysicsParticle physicsSterile neutrinoPhysics - Instrumentation and DetectorsNeutrino oscillationPhysics::Instrumentation and Detectorsddc:500.27. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Long baseline[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationphysics.ins-detInstrumentationQCPhysicsT2Khep-ex010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyT2K experimentNeutrinos; Neutrino oscillation; Long baseline; T2K; J-PARC; Super-KamiokandeFísicaNeutrino detectorJ-PARCHigh Energy Physics::ExperimentJ-PARCSuper-KamiokandeNeutrinoSuper-KamiokandeLepton
researchProduct

Evidence of Electron Neutrino Appearance in a Muon Neutrino Beam

2013

The T2K Collaboration reports evidence for electron neutrino appearance at the atmospheric mass splitting, vertical bar Delta m(32)(2)vertical bar approximate to 2.4 X 10(-3) eV(2). An excess of electron neutrino interactions over background is observed from a muon neutrino beam with a peak energy of 0.6 GeV at the Super-Kamiokande (SK) detector 295 km from the beam's origin. Signal and background predictions are constrained by data from near detectors located 280 m from the neutrino production target. We observe 11 electron neutrino candidate events at the SK detector when a background of 3.3 +/- 0.4(syst) events is expected. The background-only hypothesis is rejected with a p value of 0.0…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsFOS: Physical sciencesFluxddc:500.201 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Pion0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Momentum rangeMuon neutrino010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsT2K experimentFísicaHigh Energy Physics::ExperimentNeutrinoAbsorption cross-sectionsElectron neutrinoBeam (structure)
researchProduct

The FASER Detector

2022

FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned with the beam collisions axis. FASER also includes a sub-detector, FASER$\nu$, designed to detect neutrinos produced in the LHC collisions and to study their properties. In this paper, each component of the FASER detector is described in detail, as well as the installation of the experiment system …

High Energy Physics - Experiment (hep-ex)Physics - Instrumentation and Detectorshep-exFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Detectors and Experimental Techniquesphysics.ins-detParticle Physics - ExperimentHigh Energy Physics - Experiment
researchProduct

Tau neutrinos in the next decade: from GeV to EeV

2022

Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.

HIGH-ENERGY NEUTRINOSMAGNETIC-MOMENTAstrophysics and AstronomyNuclear and High Energy PhysicsRADIO PULSESPhysics::Instrumentation and Detectorstau neutrinosFOS: Physical sciencesCHERENKOV LIGHT YIELDGeV530High Energy Physics - Experimenttau neutrino theorySubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)neutrino experimentsSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Particle Physics - PhenomenologyAIR-SHOWERSLEPTON FLAVORastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)hep-exPhysicshep-phtau neutrinos; neutrino experiments; tau neutrino theorylandscapeCOSMIC-RAYSHigh Energy Physics - PhenomenologyQUANTUM-GRAVITYCHARGED-PARTICLES[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]beam dumpPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentLORENTZ VIOLATION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaParticle Physics - Experiment
researchProduct

Experiments and Facilities for Accelerator-Based Dark Sector Searches

2022

This paper provides an overview of experiments and facilities for accelerator-based dark matter searches as part of the US Community Study on the Future of Particle Physics (Snowmass 2021). Companion white papers to this paper present the physics drivers: thermal dark matter, visible dark portals, and new flavors and rich dark sectors.

Physics - Instrumentation and Detectorsflavorhep-exFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Astrophysics::Cosmology and Extragalactic Astrophysicsdark matterHigh Energy Physics - ExperimentthermalHigh Energy Physics - Experiment (hep-ex)Physics::Accelerator PhysicsDetectors and Experimental Techniquesphysics.ins-detParticle Physics - Experiment
researchProduct

The FASER Detector

2022

FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned with the beam collisions axis. FASER also includes a sub-detector, FASER$ν$, designed to detect neutrinos produced in the LHC collisions and to study their properties. In this paper, each component of the FASER detector is described in detail, as well as the installation of the experiment system an…

High Energy Physics - Experiment (hep-ex)FOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)
researchProduct