0000000001177776

AUTHOR

J. Roux

showing 6 related works from this author

The data acquisition system for the ANTARES neutrino telescope

2006

The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.

Nuclear and High Energy Physics[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsData managementAstrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFOS: Physical sciencesAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Data filteringData acquisition0103 physical sciences14. Life underwaterElectronics010306 general physicsInstrumentationdata acquisition system; neutrino telescopeRemote sensingAstroparticle physicsPhysicsneutrino telescope data acquisition system[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyneutrino telescopedata acquisition systemComputer data storageFísica nuclearbusiness
researchProduct

Mesures de la température et spatialisation de l’Ilot de Chaleur Urbain à Dijon

2015

The Territorial Climate Energy Plan (PCET) of the agglomeration of Dijon (Grand Dijon) includes ameasurement campaign (6 June to 28 September 2014). 50 Hobo proV2 thermometers were deployed. The selection of siteswas carried out so that the different types of urban environment (Oke, 2006) are documented. The Urban Heat Island (UHI)is discernible mainly at night, when radiative conditions are well established the day before. It is estimated to 1°C onaverage for the summer, 3-4°C during nights of fine weather. It reached 6°C during the warmest periods of the 2014 summer.A cool axis through the agglomeration shows that vegetation and water can sensibly mitigate the ICU effect.

TempératuresUrban Heat Island (UHI)[SDU.STU.CL] Sciences of the Universe [physics]/Earth Sciences/ClimatologyRégression-krigeage[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/ClimatologyMeasurementsTemperatureIlot de Chaleur Urbain (ICU)[ SDU.STU.CL ] Sciences of the Universe [physics]/Earth Sciences/ClimatologyMesuresRegression-kriging
researchProduct

Conséquences socio-économiques de la dracunculose : esquisse d'une méthode du coût économique de cette maladie

1983

Dracunculiasis brings about repercussions on the social :- repercussions on mind : the disease is perceived by the people as a disease of fate, an illness caused by an enemy- social disorganization because of assistance to patients by the community members who are not affected- school absenteeism with its results- sterility caused by some localizations and which may have inffuence on demography.The economic repercussions, which are obvious because of the disability caused by the disease during agricultural activities could never be assessed to the true price. A sufficiently precise method for assessment is suggested here. The calculation of cost of agricultural loss in the community involve…

AfriqueSanté[SHS.EDU]Humanities and Social Sciences/EducationBurkina Faso[SHS.EDU] Humanities and Social Sciences/EducationMaladieÉconomie de la santéHaute-VoltaAnalyse de coût
researchProduct

The ANTARES Optical Beacon System

2007

ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirabl…

Nuclear and High Energy PhysicsPhotomultiplierPhysics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesneutrino telescope; optical beacon; time calibrationAstrophysics01 natural scienceslaw.inventionTelescope[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Opticslaw0103 physical sciencesCalibrationtime calibrationAngular resolution14. Life underwateroptical beacon010306 general physicsInstrumentationCherenkov radiationPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]neutrino telescope time calibration optical beacon010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for Astrophysicsneutrino telescopeSITEAstronomyBeaconLIGHTFísica nuclearNeutrinobusiness
researchProduct

First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope

2006

In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system, as well as the calibration devices of the detector. The in-situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. T…

Photomultiplierneutrino astronomy; photon detection; underwater detectorPositioning systemInstrumentationAstrophysics::High Energy Astrophysical PhenomenaNeutrino astronomy Underwater detector Photon detectionFOS: Physical sciencesAstrophysics01 natural sciencesneutrino astronomy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesCalibrationAngular resolution010306 general physicsRemote sensingAstroparticle physicsPhysicsunderwater detector[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomySITEAstronomy and AstrophysicsLIGHTPHOTON DETECTIONNEUTRINO ASTRONOMYFísica nuclearUNDERWATER DETECTORNeutrino astronomy
researchProduct

ANTARES: The first undersea neutrino telescope

2011

The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given. © 2011 Elsevier B.V. All rights reserved.

Optical telescopesPhysics::Instrumentation and DetectorsAstronomyMarine engineeringSubmarine cablesAstrophysics01 natural scienceslaw.inventionAstroparticlelaw010303 astronomy & astrophysicsInstrumentationPhysicsDense wavelength division multiplexingDetectorAstrophysics::Instrumentation and Methods for AstrophysicsDetectorsSubmarine cableDeep seaNeutrino astronomyFísica nuclearNeutrinoMarine technologyAstrophysics - Instrumentation and Methods for AstrophysicsNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Wet mateable connectorAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLINEOptical telescopePhysics::GeophysicsTelescopePhotomultiplier tube0103 physical sciencesNeutrinoDWDM14. Life underwaterDeep sea detectorInstrumentation and Methods for Astrophysics (astro-ph.IM)DETECTORAstroparticle physics010308 nuclear & particles physicswet mateable connector.Marine technologyAstronomyElementary particles[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]PhotomultipliersKM3NeTFISICA APLICADAEarth (planet)High Energy Physics::ExperimentNeutrino astronomyastroparticle; neutrino astronomy; marine technology; dwdm; photomultiplier tube; deep sea detector; submarine cable; wet mateable connector; neutrinoSYSTEMTelescopes
researchProduct