A Quantum Lovasz Local Lemma
The Lovasz Local Lemma (LLL) is a powerful tool in probability theory to show the existence of combinatorial objects meeting a prescribed collection of "weakly dependent" criteria. We show that the LLL extends to a much more general geometric setting, where events are replaced with subspaces and probability is replaced with relative dimension, which allows to lower bound the dimension of the intersection of vector spaces under certain independence conditions. Our result immediately applies to the k-QSAT problem: For instance we show that any collection of rank 1 projectors with the property that each qubit appears in at most $2^k/(e \cdot k)$ of them, has a joint satisfiable state. We then …