0000000001178634

AUTHOR

Christine Caputo

Phospha-Fischer Carbenes: Synthesis, Structure, Bonding, and Reactions of Pd(0)− and Pt(0)−Phosphenium Complexes

The analogy between cationic group 10 metal−phosphenium complexes and Fischer carbenes has been formalized through structural and reactivity studies and by energy decomposition analysis (EDA) of the M−P bond. The studied compounds were the three-coordinate, 16-electron species [(NHPMes)M(PPh3)2]OTf (M = Pt (1) and Pd (2); [NHPMes]+ is the N-heterocyclic phosphenium (NHP) cation, [tiebar above startPN(2,4,6-Me3-C6H2)CH2CH2tiebar above endN(2,4,6-Me3-C6H2)]+, OTf = trifluoromethanesulfonate); these were made by reaction of [NHPMes]OTf with M(PPh3)4. The metal−phosphenium bond in both compounds was dominated by metal-to-ligand π-donation. This differed from the M−C bonds in the analogous N-het…

research product

Counterintuitive Mechanisms of the Addition of Hydrogen and Simple Olefins to Heavy Group 13 Alkene Analogues

The mechanism of the reaction of olefins and hydrogen with dimetallenes ArMMAr (Ar = aromatic group; M = Al or Ga) was studied by density functional theory calculations and experimental methods. The digallenes, for which the most experimental data are available, are extensively dissociated to gallanediyl monomers, :GaAr, in hydrocarbon solution, but the calculations and experimental data showed also that they react with simple olefins, such as ethylene, as intact ArGaGaAr dimers via stepwise [2 + 2 + 2] cycloadditions due to their considerably lower activation barriers vis-à-vis the gallanediyl monomers, :GaAr. This pathway was preferred over the [2 + 2] cycloaddition of olefin to monomeric…

research product

A Cation-Captured Palladium(0) Anion: Synthesis, Structure, and Bonding of [PdBr(PPh3)2]− Ligated by an N-Heterocyclic Phosphenium Cation

Unsaturated N-heterocyclic phosphenium cations (uNHP) stabilize the [Pd0(PR3)2X]− anion proposed over the past decade to be the crucial but elusive intermediate in palladium-catalyzed cross-coupling reactions (X = halide). Insertion of metal into the P−Br bond of the precursor mesityl-substituted bromophosphine gives the structurally characterized Pd(0)-phosphenium complex (uNHPMes)Pd(PPh3)2Br, which features a long Pd−Br bond (2.7240(9) Å) and the shortest known Pd−P bond (2.1166(17) Å). The reaction is proposed to proceed by an associative pathway involving a Pd-bromophosphine complex that undergoes P-to-Pd bromide transfer. peerReviewed

research product