0000000001180072

AUTHOR

Marc Lipinski

Chromatin Domains and Regulation of Transcription

Compartmentalization and compaction of DNA in the nucleus is the characteristic feature of eukaryotic cells. A fully extended DNA molecule has to be compacted 100,000 times to fit within the nucleus. At the same time it is critical that various DNA regions remain accessible for interaction with regulatory factors and transcription/replication factories. This puzzle is solved at the level of DNA packaging in chromatin that occurs in several steps: rolling of DNA onto nucleosomes, compaction of nucleosome fiber with formation of the so-called 30 nm fiber, and folding of the latter into the giant (50-200 kbp) loops, fixed onto the protein skeleton, the nuclear matrix. The general assumption is…

research product

Transcription- and apoptosis-dependent long-range distribution of tight DNA-protein complexes in the chicken alpha-globin gene.

The proteins tightly bound to DNA (TBP) are a group of proteins that remain attached to DNA with covalent or noncovalent bonds after its deproteinization, and have been hypothesized to be involved in regulation of gene expression. To investigate this question further, oligonucleotide DNA arrays were used to determine the distribution of tightly bound proteins along a 100-kb DNA fragment surrounding the chicken alpha-globin gene domain in DNA from chicken erythrocytes, liver, and AEV-transformed HD3 (erythroblast) cells in different physiological conditions. DNA was fractionated into TBP-free (F) and TBP-enriched (R) fractions by separation on nitrocellulose, and these fractions were used as…

research product

A One-Step PCR-Based Assay to Evaluate the Efficiency and Precision of Genomic DNA-Editing Tools

Despite rapid progress, many problems and limitations persist and limit the applicability of gene-editing techniques. Making use of meganucleases, TALENs, or CRISPR/Cas9-based tools requires an initial step of pre-screening to determine the efficiency and specificity of the designed tools. This step remains time consuming and material consuming. Here we propose a simple, cheap, reliable, time-saving, and highly sensitive method to evaluate a given gene-editing tool based on its capacity to induce chromosomal translocations when combined with a reference engineered nuclease. In the proposed technique, designated engineered nuclease-induced translocations (ENIT), a plasmid coding for the DNA-…

research product