A compliant visco-plastic particle contact model based on differential variational inequalities
This work describes an approach to simulate contacts between threedimensional shapes with compliance and damping using the framework of the differential variational inequality theory. Within the context of nonsmooth dynamics, we introduce an extension to the classical set-valued model for frictional contacts between rigid bodies, allowing contacts to experience local compliance, viscosity, and plasticization. Different types of yield surfaces can be defined for various types of contact, a versatile approach that contains the classic dry Coulomb friction as a special case. The resulting problem is a differential variational inequality that can be solved, at each integration time step, as a v…