0000000001182862

AUTHOR

Nikolaos Sfakianakis

showing 13 related works from this author

Numerical Treatment of the Filament-Based Lamellipodium Model (FBLM)

2017

We describe in this work the numerical treatment of the Filament-Based Lamellipodium Model (FBLM). This model is a two-phase two-dimensional continuum model, describing the dynamics of two interacting families of locally parallel F-actin filaments. It includes, among others, the bending stiffness of the filaments, adhesion to the substrate, and the cross-links connecting the two families. The numerical method proposed is a Finite Element Method (FEM) developed specifically for the needs of this problem. It is comprised of composite Lagrange–Hermite two-dimensional elements defined over a two-dimensional space. We present some elements of the FEM and emphasize in the numerical treatment of t…

0301 basic medicineFinite element spaceNumerical analysisPiecewise constant approximationMechanicsFinite element methodQuantitative Biology::Cell BehaviorQuantitative Biology::Subcellular ProcessesPiecewise linear functionProtein filament03 medical and health sciences030104 developmental biology0302 clinical medicineClassical mechanics030220 oncology & carcinogenesisBending stiffnessLamellipodiumMathematics
researchProduct

Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence

2021

We provide a short review of existing models with multiple taxis performed by (at least) one species and consider a new mathematical model for tumor invasion featuring two mutually exclusive cell phenotypes (migrating and proliferating). The migrating cells perform nonlinear diffusion and two types of taxis in response to non-diffusing cues: away from proliferating cells and up the gradient of surrounding tissue. Transitions between the two cell subpopulations are influenced by subcellular (receptor binding) dynamics, thus conferring the setting a multiscale character. We prove global existence of weak solutions to a simplified model version and perform numerical simulations for the full se…

Tumor invasionTaxisComputational biologyBiologyMutually exclusive events01 natural sciencesHaptotaxisMultiple taxis and review of modelsRC0254Mathematics - Analysis of PDEsSDG 3 - Good Health and Well-beingCell Behavior (q-bio.CB)Numerical simulationsFOS: MathematicsDiscrete Mathematics and CombinatoricsNonlinear diffusionQA Mathematics0101 mathematicsGlobal existenceQARC0254 Neoplasms. Tumors. Oncology (including Cancer)Genetic heterogeneityInterspecies repellenceApplied Mathematics010102 general mathematicsI-PWCell subpopulationsPhenotypeAC010101 applied mathematicsFOS: Biological sciencesQuantitative Biology - Cell Behavior35Q92 (Primary) 92C17 92C50 (Secondary)Analysis of PDEs (math.AP)Discrete & Continuous Dynamical Systems - B
researchProduct

Energy intake functions and energy budgets of ectotherms and endotherms derived from their ontogenetic growth in body mass and timing of sexual matur…

2017

Abstract Ectothermic and endothermic vertebrates differ not only in their source of body temperature (environment vs. metabolism), but also in growth patterns, in timing of sexual maturation within life, and energy intake functions. Here, we present a mathematical model applicable to ectothermic and endothermic vertebrates. It is designed to test whether differences in the timing of sexual maturation within an animal's life (age at which sexual maturity is reached vs. longevity) together with its ontogenetic gain in body mass (growth curve) can predict the energy intake throughout the animal's life (food intake curve) and can explain differences in energy partitioning (between growth, repro…

0106 biological sciences0301 basic medicineStatistics and ProbabilityOntogenymedia_common.quotation_subjectZoologyGrowth010603 evolutionary biology01 natural sciencesEndothermic processGeneral Biochemistry Genetics and Molecular BiologyBody Mass IndexBody Temperature03 medical and health sciencesbiology.animalAnimalsSexual maturitySexual Maturationmedia_commonGeneral Immunology and MicrobiologybiologyApplied MathematicsLongevityVertebrateThermogenesisGeneral MedicineGrowth curve (biology)Models Theoretical030104 developmental biologyModeling and SimulationEctothermVertebratesReproductionEnergy IntakeGeneral Agricultural and Biological SciencesJournal of Theoretical Biology
researchProduct

Numerical Simulation of a Contractivity Based Multiscale Cancer Invasion Model

2017

We present a problem-suited numerical method for a particularly challenging cancer invasion model. This model is a multiscale haptotaxis advection-reaction-diffusion system that describes the macroscopic dynamics of two types of cancer cells coupled with microscopic dynamics of the cells adhesion on the extracellular matrix. The difficulties to overcome arise from the non-constant advection and diffusion coefficients, a time delay term, as well as stiff reaction terms.

Mathematical optimizationComputer simulationQuantitative Biology::Tissues and OrgansNumerical analysisDynamics (mechanics)medicineCancerStatistical physicsDiffusion (business)medicine.diseaseHaptotaxisQuantitative Biology::Cell BehaviorMathematics
researchProduct

Adaptive mesh reconstruction for hyperbolic conservation laws with total variation bound

2012

We consider 3-point numerical schemes, that resolve scalar conservation laws, that are oscillatory either to their dispersive or anti-diffusive nature. The spatial discretization is performed over non-uniform adaptively redefined meshes. We provide a model for studying the evolution of the extremes of the oscillations. We prove that proper mesh reconstruction is able to control the oscillations; we provide bounds for the Total Variation (TV) of the numerical solution. We, moreover, prove under more strict assumptions that the increase of the TV, due to the oscillatory behavior of the numerical schemes, decreases with time; hence proving that the overall scheme is TV Increase-Decreasing (TVI…

Conservation lawAlgebra and Number TheoryDiscretizationApplied MathematicsScalar (mathematics)Time evolutionRegular polygonTopologyComputational Mathematicssymbols.namesakeRiemann problemMathematics Subject ClassificationsymbolsApplied mathematicsPolygon meshMathematicsMathematics of Computation
researchProduct

Entropy dissipation of moving mesh adaptation

2014

Non-uniform grids and mesh adaptation have become an important part of numerical approximations of differential equations over the past decades. It has been experimentally noted that mesh adaptation leads not only to locally improved solution but also to numerical stability of the underlying method. In this paper we consider nonlinear conservation laws and provide a method to perform the analysis of the moving mesh adaptation method, including both the mesh reconstruction and evolution of the solution. We moreover employ this method to extract sufficient conditions — on the adaptation of the mesh — that stabilize a numerical scheme in the sense of the entropy dissipation.

Nonlinear systemConservation lawMathematical optimizationDifferential equationGeneral MathematicsNumerical analysisApplied mathematicsEntropy dissipationAdaptation (computer science)Mesh adaptationAnalysisNumerical stabilityMathematics
researchProduct

An adaptive rectangular mesh administration and refinement technique with application in cancer invasion models

2022

We present an administration technique for the bookkeeping of adaptive mesh refinement on (hyper-)rectangular meshes. Our technique is a unified approach for h-refinement on 1-, 2- and 3D domains, which is easy to use and avoids traversing the connectivity graph of the ancestry of mesh cells. Due to the employed rectangular mesh structure, the identification of the siblings and the neighbouring cells is greatly simplified. The administration technique is particularly designed for smooth meshes, where the smoothness is dynamically used in the matrix operations. It has a small memory footprint that makes it affordable for a wide range of mesh resolutions over a large class of problems. We pre…

Finite volume methodRC0254 Neoplasms. Tumors. Oncology (including Cancer)Applied MathematicsT-NDASCancer invasionNumerical Analysis (math.NA)Mesh administration510Adaptive mesh refinementRC0254Computational MathematicsSDG 3 - Good Health and Well-beingFOS: MathematicsMathematics - Numerical AnalysisQA Mathematicsh-refinementddc:510QA
researchProduct

An Extended Filament Based Lamellipodium Model Produces Various Moving Cell Shapes in the Presence of Chemotactic Signals

2015

The Filament Based Lamellipodium Model (FBLM) is a two-phase two-dimensional continuum model, describing the dynamcis of two interacting families of locally parallel actin filaments (C.Schmeiser and D.Oelz, How do cells move? Mathematical modeling of cytoskeleton dynamics and cell migration. Cell mechanics: from single scale-based models to multiscale modeling. Chapman and Hall, 2010). It contains accounts of the filaments' bending stiffness, of adhesion to the substrate, and of cross-links connecting the two families. An extension of the model is presented with contributions from nucleation of filaments by branching, from capping, from contraction by actin-myosin interaction, and from a pr…

Statistics and ProbabilityNucleationNanotechnologymacromolecular substancesMyosinsBranching (polymer chemistry)Models BiologicalGeneral Biochemistry Genetics and Molecular BiologyPolymerizationQuantitative Biology::Cell BehaviorProtein filamentQuantitative Biology::Subcellular ProcessesCell Behavior (q-bio.CB)CoulombAnimalsComputer SimulationPseudopodiaCytoskeletonCell ShapeActinPhysicsGeneral Immunology and MicrobiologyApplied MathematicsChemotaxisChemotaxisNumerical Analysis Computer-AssistedGeneral Medicine92C17Actin CytoskeletonClassical mechanicsModeling and SimulationFOS: Biological sciencesQuantitative Biology - Cell BehaviorLamellipodiumGeneral Agricultural and Biological SciencesSignal Transduction
researchProduct

Chemotaxis and Haptotaxis on Cellular Level

2018

Chemotaxis and haptotaxis have been a main theme in the macroscopic study of bacterial and cellular motility. In this work, we use a successful model that describes cellular motility and investigate the influence these processes have on the shape and motility of fast migrating cells. We note that, despite the biological and modelling differences of chemotaxis and haptotaxis, the cells exhibit many similarities in their migration. In particular, after an initial adjustment phase, the cells obtain a stable shape, similar in both cases, and move with constant velocity.

Constant velocityMotilityChemotaxisCellular motilityBiologyCellular levelLamellipodiumHaptotaxisCell biology
researchProduct

A study on time discretization and adaptive mesh refinement methods for the simulation of cancer invasion: The urokinase model

2016

In the present work we investigate a model that describes the chemotactically and proteolytically driven tissue invasion by cancer cells. The model is a system of advection-reaction-diffusion equations that takes into account the role of the serine protease urokinase-type plasminogen activator. The analytical and numerical study of such a system constitutes a challenge due to the merging, emerging, and traveling concentrations that the solutions exhibit. Classical numerical methods applied to this system necessitate very fine discretization grids to resolve these dynamics in an accurate way. To reduce the computational cost without sacrificing the accuracy of the solution, we apply adaptive…

0301 basic medicineWork (thermodynamics)Mathematical optimizationFinite volume methodDiscretizationComputer scienceAdaptive mesh refinementApplied MathematicsNumerical analysisStability (learning theory)03 medical and health sciencesComputational Mathematics030104 developmental biologyDevelopment (topology)Applied mathematicsTissue invasionApplied Mathematics and Computation
researchProduct

Energy intake functions of ectotherms and endotherms derived from their body mass growth

2016

How animals allocate energy to different body functions is still not completely understood and a challenging topic until recently. Here, we investigate in more detail the allocation of energy intake to growth, reproduction or heat production by developing energy budget models for ectothermic and endothermic vertebrates using a mathematical approach. We calculated energy intake functions of ectotherms and endotherms derived from their body mass growth. We show that our energy budget model produces energy intake patterns and distributions as observed in ectothermic and endothermic species. Our results comply consistently with some empirical studies that in endothermic species, like birds and …

FOS: Biological sciencesPopulations and Evolution (q-bio.PE)Quantitative Biology - Populations and Evolution92B05 92D50
researchProduct

Existence and uniqueness of global classical solutions to a two species cancer invasion haptotaxis model

2017

We consider a haptotaxis cancer invasion model that includes two families of cancer cells. Both families, migrate on the extracellular matrix and proliferate. Moreover the model describes an epithelial-to-mesenchymal-like transition between the two families, as well as a degradation and a self-reconstruction process of the extracellular matrix. We prove positivity and conditional global existence and uniqueness of the classical solutions of the problem for large initial data.

Mathematics - Analysis of PDEs35A01 35B65 35Q92 92C17FOS: MathematicsAnalysis of PDEs (math.AP)
researchProduct

Entropy dissipation of moving mesh adaptation

2012

Non-uniform grids and mesh adaptation have been a growing part of numerical simulation over the past years. It has been experimentally noted that mesh adaptation leads not only to locally improved solution but also to numerical stability of the underlying method. There have been though only few results on the mathematical analysis of these schemes due to the lack of proper tools that incorporate both the time evolution and the mesh adaptation step of the overall algorithm. In this paper we provide a method to perform the analysis of the mesh adaptation method, including both the mesh reconstruction and evolution of the solution. We moreover employ this method to extract sufficient condition…

Computer Science::GraphicsFOS: MathematicsNumerical Analysis (math.NA)Mathematics - Numerical AnalysisComputingMethodologies_COMPUTERGRAPHICSMathematics::Numerical Analysis
researchProduct