Nucleon localization function in rotating nuclei
Background: An electron localization function was originally introduced to visualize bond structures in molecules. It became a useful tool to describe electron configurations in atoms, molecules and solids. In nuclear physics, a nucleon localization function (NLF) has been used to characterize clusters in light nuclei, fragment formation in fission and pasta phases in the inner crust of neutron stars. Purpose: We use the NLF to study the nuclear response to fast rotation. Methods: We generalize the NLF to the case of nuclear rotation. The extended expressions involve both time-even and time-odd local densities. Since current density and density gradient contribute to the NLF primarily at th…