Highly efficient and stable dye-sensitized solar cells based on SnO2nanocrystals prepared by microwave-assisted synthesis
Highly efficient dye-sensitized solar cells (DSSCs) with excellent long-term stability were fabricated based on tin(IV) oxide (SnO2) nanocrystals with tunable morphologies and band energy levels. The nanocrystals were prepared by a facile, fast, and energy-saving microwave-assisted solvothermal reaction. Through variation of the precursor base used during nanocrystal synthesis control over morphology was achieved—precursor metal cations are known to have a strong influence on the growth process of SnO2 nanostructures. A simple and economic way to prepare semiconducting pastes for photoanodes was devised. The photovoltaic performance of dye-sensitized solar cells based on SnO2 photoanodes wa…