0000000001188137

AUTHOR

Daniel Mohler

Recent results on the meson and baryon spectrum from lattice QCD

Recent lattice results on the meson and baryon spectrum with a focus on the determination of hadronic resonance masses and widths using a combined basis of single-hadron and hadron-hadron interpolating fields are reviewed. These mostly exploratory calculations differ from traditional lattice QCD spectrum calculations for states stable under QCD, where calculations with a full uncertainty estimate are already routinely performed. Progress and challenges in these calculations are highlighted.

research product

Positive parity $D_s$ mesons

We study the positive parity charmed strange mesons using lattice QCD, the only reliable ab initio method to study QCD at low energies. Especially the experimentally observed $D_{s0}^*(2317)$ and $D_{s1}(2460)$ have challenged theory for quite some time. The dynamical lattice QCD simulations are performed at two distinct pion masses, $m_{\pi}$ = 266 MeV and 156 MeV, using both $\bar{c}s$ as well as $DK$ and $D^*K$ scattering operators in the construction of the correlation matrix in order to take into the account threshold effects. While the $J^P = 0^+$ channel benefited most from the inclusion of scattering operators, it was also crucial for the case of the $D_{s1}(2460)$. Using the L\"usc…

research product

Splittings of low-lying charmonium masses at the physical point

We present high-precision results from lattice QCD for the mass splittings of the low-lying charmonium states. For the valence charm quark, the calculation uses Wilson-clover quarks in the Fermilab interpretation. The gauge-field ensembles are generated in the presence of up, down, and strange sea quarks, based on the improved staggered (asqtad) action, and gluon fields, based on the one-loop, tadpole-improved gauge action. We use five lattice spacings and two values of the light sea quark mass to extrapolate the results to the physical point. An enlarged set of interpolating operators is used for a variational analysis to improve the determination of the energies of the ground states in ea…

research product

Towards extracting the timelike pion form factor on CLS 2-flavour ensembles

Results are presented from an ongoing study of the $\rho$ resonance. We use the distillation approach in order to create correlator matrices involving $\rho$ and $\pi\pi$ interpolators. The study is done in a centre-of-mass frame and several moving frames. We are able to extract energy levels by solving the GEVP of those correlator matrices. The initial exploratory study is being done on a CLS 2-flavour lattice with a pion mass of $451$ $\mathrm{MeV}$ using $\mathcal{O}(a)$ improved Wilson fermions. One aim of this work is to extract the timelike pion form factor after applying the L\"uscher formalism. We also plan to integrate this study with the existing Mainz programme for the calculatio…

research product

Prediction of positive parity Bs mesons and search for the X(5568)

We use a combination of quark-antiquark and $B^{(*)}K$ interpolating fields to predict the mass of two QCD bound states below the $B^*K$ threshold in the quantum channels $J^P=0^+$ and $1^+$. The mesons correspond to the b-quark cousins of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ and have not yet been observed in experiment, even though they are expected to be found by LHCb. In addition to these predictions, we obtain excellent agreement of the remaining p-wave energy levels with the known $B_{s1}(5830)$ and $B_{s2}^*(5840)$ mesons. The results from our first principles calculation are compared to previous model-based estimates. More recently the D0 collaboration claimed the existence of an …

research product

Leading hadronic contribution to (g−2)μ from lattice QCD with Nf=2+1 flavors of O(a) improved Wilson quarks

The comparison of the theoretical and experimental determinations of the anomalous magnetic moment of the muon (g−2)μ constitutes one of the strongest tests of the Standard Model at low energies. We compute the leading hadronic contribution to (g−2)μ using lattice QCD simulations employing Wilson quarks. Gauge field ensembles at four different lattice spacings and several values of the pion mass down to its physical value are used. We apply the O(a) improvement program with two discretizations of the vector current to better constrain the approach to the continuum limit. The electromagnetic current correlators are computed in the time-momentum representation. In addition, we perform auxilia…

research product

CLS 2+1 flavor simulations at physical light-and strange-quark masses

We report recent efforts by CLS to generate an ensemble with physical light- and strange-quark masses in a lattice volume of 192x96^3 at $\beta=3.55$ corresponding to a lattice spacing of 0.064 fm. This ensemble is being generated as part of the CLS 2+1 flavor effort with improved Wilson fermions. Our simulations currently cover 5 lattice spacings ranging from 0.039 fm to 0.086 fm at various pion masses along chiral trajectories with either the sum of the quark masses kept fixed, or with the strange-quark mass at the physical value. The current status of simulations is briefly reviewed, including a short discussion of measured autocorrelation times and of the main features of the simulation…

research product

Prediction of positive parity $B_s$ mesons and search for the $X(5568)$

We use a combination of quark-antiquark and $B^{(*)}K$ interpolating fields to predict the mass of two QCD bound states below the $B^*K$ threshold in the quantum channels $J^P=0^+$ and $1^+$. The mesons correspond to the b-quark cousins of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ and have not yet been observed in experiment, even though they are expected to be found by LHCb. In addition to these predictions, we obtain excellent agreement of the remaining p-wave energy levels with the known $B_{s1}(5830)$ and $B_{s2}^*(5840)$ mesons. The results from our first principles calculation are compared to previous model-based estimates. More recently the D0 collaboration claimed the existence of an …

research product

The anomalous magnetic moment of the muon in the Standard Model

We are very grateful to the Fermilab Directorate and the Fermilab Theoretical Physics Department for their financial and logistical support of the first workshop of the Muon g -2 Theory Initiative (held near Fermilab in June 2017) [123], which was crucial for its success, and indeed for the successful start of the Initiative. Financial support for this workshop was also provided by the Fermilab Distinguished Scholars program, the Universities Research Association through a URA Visiting Scholar award, the Riken Brookhaven Research Center, and the Japan Society for the Promotion of Science under Grant No. KAKEHNHI-17H02906. We thank Shoji Hashimoto, Toru Iijima, Takashi Kaneko, and Shohei Nis…

research product

Charmonium resonances from 2+1 flavor CLS lattices

Many exotic charmonium resonances have been identified recently in experiment, however their nature and properties are mostly unknown. Algorithmic and theoretical progress in lattice calculations has enabled reliable numerical investigation of the spectrum below the strong decay threshold, while the study of charmonium resonances remains an open challenge. The main difficulty to overcome is the presence of many open decay channels which are coupled together, resulting in a complex finite volume quantization condition. We report on our recent progress towards the determination of single-channel and coupled-channel scattering matrices in the scalar and vector channels on CLS ensembles. We als…

research product