0000000001188369

AUTHOR

Cansu Igci

showing 2 related works from this author

Azatruxene‐Based, Dumbbell‐Shaped, Donor–π‐Bridge–Donor Hole‐Transporting Materials for Perovskite Solar Cells

2020

Three novel donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) featuring triazatruxene electron-donating units bridged by different 3,4-ethylenedioxythiophene (EDOT) π-conjugated linkers have been synthesized, characterized, and implemented in mesoporous perovskite solar cells (PSCs). The optoelectronic properties of the new dumbbell-shaped derivatives (DTTXs) are highly influenced by the chemical structure of the EDOT-based linker. Red-shifted absorption and emission and a stronger donor ability were observed in passing from DTTX-1 to DTTX-2 due to the extended π-conjugation. DTTX-3 featured an intramolecular charge transfer between the external triazatruxene units and the azo…

Electron mobilityPhotoluminescence010405 organic chemistryChemistryOrganic ChemistryEnergy conversion efficiencyGeneral ChemistryConductivity010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesCrystallographyIntramolecular forceMesoporous materialAbsorption (electromagnetic radiation)Perovskite (structure)Chemistry – A European Journal
researchProduct

Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells

2021

Defects of metal-halide perovskites detrimentally influence the optoelectronic properties of the thin film and, ultimately, the photovoltaic performance of perovskite solar cells (PSCs). Especially, defect-mediated nonradiative recombination that occurs at the perovskite interface significantly limits the power conversion efficiency (PCE) of PSCs. In this regard, interfacial engineering or surface treatment of perovskites has become a viable strategy for reducing the density of surface defects, thereby improving the PCE of PSCs. Here, an organic molecule, tris(5-((tetrahydro-2H-pyran-2-yl)oxy)pentyl) phosphine oxide (THPPO), is synthesized and introduced as a defect passivation agent in PSC…

Phosphine oxideMaterials sciencePhotovoltaic systemEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryChemical engineeringMaterials ChemistryElectrochemistryChemical Engineering (miscellaneous)Lewis acids and basesElectrical and Electronic EngineeringThin film0210 nano-technologyÒxidsMaterialsDerivative (chemistry)Cèl·lules fotoelèctriquesPerovskite (structure)ACS Applied Energy Materials
researchProduct