6533b86efe1ef96bd12cc967
RESEARCH PRODUCT
Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells
Henk J. BolinkAlbertus Adrian SutantoMohammad Khaja NazeeruddinMounir MensiHyung-joong YunNaoyuki ShibayamaHobeom KimValentin I. E. QuelozHiroyuki KandaCristina MomblonaCansu IgciAron J. Huckabasubject
Phosphine oxideMaterials sciencePhotovoltaic systemEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryChemical engineeringMaterials ChemistryElectrochemistryChemical Engineering (miscellaneous)Lewis acids and basesElectrical and Electronic EngineeringThin film0210 nano-technologyÒxidsMaterialsDerivative (chemistry)Cèl·lules fotoelèctriquesPerovskite (structure)description
Defects of metal-halide perovskites detrimentally influence the optoelectronic properties of the thin film and, ultimately, the photovoltaic performance of perovskite solar cells (PSCs). Especially, defect-mediated nonradiative recombination that occurs at the perovskite interface significantly limits the power conversion efficiency (PCE) of PSCs. In this regard, interfacial engineering or surface treatment of perovskites has become a viable strategy for reducing the density of surface defects, thereby improving the PCE of PSCs. Here, an organic molecule, tris(5-((tetrahydro-2H-pyran-2-yl)oxy)pentyl) phosphine oxide (THPPO), is synthesized and introduced as a defect passivation agent in PSCs. The P.O terminal group of THPPO, a Lewis base, can passivate perovskite surface defects such as undercoordinated Pb2+. Consequently, improvement of PCEs from 19.87 to 20.70% and from 5.84 to 13.31% are achieved in n-i-p PSCs and hole-transporting layer (HTL)-free PSCs, respectively.
year | journal | country | edition | language |
---|---|---|---|---|
2021-02-08 | ACS Applied Energy Materials |