Search results for "Òxids"

showing 6 items of 6 documents

Integrated Cleanroom Process for the Vapor-Phase Deposition of Large-Area Zeolitic Imidazolate Framework Thin Films

2019

Chemistry of materials XX(XX), acs.chemmater.9b03435 (2019). doi:10.1021/acs.chemmater.9b03435

Materials scienceGeneral Chemical EngineeringQuímica organometàl·licaNanotechnology02 engineering and technologyGeneral ChemistryChemical vapor depositionCiència dels materials540010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCleanroomScientific methodddc:540Materials ChemistryDeposition (phase transition)Metal-organic frameworkElectronicsThin filmÒxids0210 nano-technologyZeolitic imidazolate frameworkChemistry of Materials
researchProduct

Influence of the Molecular Weight on PVA/GO Composite Membranes for Fuel Cell Applications

2020

Composite polymer electrolyte membranes were prepared with poly (vinyl alcohol) (PVA). Two different molecular weight (Mw), 67·103 and 130·103 g·mol−1 were selected, cross-linked with sulfosuccinic acid (SSA) and doped graphene oxide (GO). The effects on the membranes obtained from these polymers were characterized in order to evaluate the fuel cell performance. Electron microscopy showed a proper nanoparticle distribution in the polymer matrix. The chemical structure was evaluated by Fourier transform infrared spectroscopy. The absence of a crystalline structure and the enhancement on the thermal stability with the addition of 1% of GO was demonstrated by thermal characterization. Total tr…

Materials scienceSolucions polimèriquesChemical engineeringMaterials Science (miscellaneous)Fuel cellsComposite membraneEnvironmental Science (miscellaneous)ÒxidsMaterials
researchProduct

ZnS Ultrathin interfacial layers for optimizing carrier management in Sb2S3-based photovoltaics

2021

Antimony chalcogenides represent a family of materials of low toxicity and relative abundance, with a high potential for future sustainable solar energy conversion technology. However, solar cells based on antimony chalcogenides present open-circuit voltage losses that limit their efficiencies. These losses are attributed to several recombination mechanisms, with interfacial recombination being considered as one of the dominant processes. In this work, we exploit atomic layer deposition (ALD) to grow a series of ultrathin ZnS interfacial layers at the TiO2/Sb2S3 interface to mitigate interfacial recombination and to increase the carrier lifetime. ALD allows for very accurate control over th…

Materials sciencechemistry.chemical_elementanti-recombination layer02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesAtomic layer depositionAntimonyPhotovoltaicsinterfacial layerGeneral Materials Sciencepassivation layerÒxidsMaterialsCèl·lules fotoelèctriquesextremely thin absorberthin film solar cellsintegumentary systemLow toxicitybusiness.industrytunnel barrierfood and beverages021001 nanoscience & nanotechnology0104 chemical sciencesTunnel barrierchemistrybiological sciencesatomic layer depositionSolar energy conversionOptoelectronicschalcogenidesThin film solar cell0210 nano-technologybusinessResearch Article
researchProduct

Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells

2021

Defects of metal-halide perovskites detrimentally influence the optoelectronic properties of the thin film and, ultimately, the photovoltaic performance of perovskite solar cells (PSCs). Especially, defect-mediated nonradiative recombination that occurs at the perovskite interface significantly limits the power conversion efficiency (PCE) of PSCs. In this regard, interfacial engineering or surface treatment of perovskites has become a viable strategy for reducing the density of surface defects, thereby improving the PCE of PSCs. Here, an organic molecule, tris(5-((tetrahydro-2H-pyran-2-yl)oxy)pentyl) phosphine oxide (THPPO), is synthesized and introduced as a defect passivation agent in PSC…

Phosphine oxideMaterials sciencePhotovoltaic systemEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryChemical engineeringMaterials ChemistryElectrochemistryChemical Engineering (miscellaneous)Lewis acids and basesElectrical and Electronic EngineeringThin film0210 nano-technologyÒxidsMaterialsDerivative (chemistry)Cèl·lules fotoelèctriquesPerovskite (structure)ACS Applied Energy Materials
researchProduct

Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species

2016

El mateix article està publicat en alemany a l'edició alemanya d' 'Angewandte Chemie' (ISSN 0044-8249, EISSN 1521-3757), 2016, vol. 128, núm. 21, p.6418–6422. DOI http://dx.doi.org/10.1002/ange.201601396 The reaction of [Fe(CF3SO3)2(PyNMe3)] with excess peracetic acid at −40 °C leads to the accumulation of a metastable compound that exists as a pair of electromeric species, [FeIII(OOAc)(PyNMe3)]2+ and [FeV(O)(OAc)(PyNMe3)]2+, in fast equilibrium. Stopped-flow UV/Vis analysis confirmed that oxygen atom transfer (OAT) from these electromeric species to olefinic substrates is exceedingly fast, forming epoxides with stereoretention. The impact of the electronic and steric properties of the subs…

Steric effectsoxidationIronKineticsAlkenes010402 general chemistryMedicinal chemistry01 natural sciencesCatalysisCatalysisReaction ratechemistry.chemical_compoundPeracetic acidMetastabilityepoxidationEpòxidsOrganic chemistryChemistry010405 organic chemistrySubstrate (chemistry)General Chemistrynonheme iron complexesGeneral MedicineEpoxy compoundsNonheme iron0104 chemical sciencesAlquenskineticsolefinsFerroAngewandte Chemie
researchProduct

Creixement cristal·lí mitjançant la tècnica MOCVD i caracterització morfològica i estructural dels òxids de cadmi i zinc

2019

L'òxid de cadmi (CdO) i l'òxid de zinc (ZnO) han estat postulats com dos materials amb gran potencialitat en un ampli ventall d'aplicacions tecnològiques. Pel que fa a les seues propietats físiques, ambdós presenten un caràcter semiconductor de tipus “n”, sense dopatge intencionat. A més, el seu bandgap directe a 2.2 i 3.3 eV, respectivament, asseguren un bon grau de transparència òptica en la regió infraroja i visible de l'espectre electromagnètic. La projecció d'aquests compostos en camps com la plasmònica o les tecnologies basades en transicions intersubbanda fa convenient el control per a l'obtenció de capes molt primes. Malgrat això, gairebé tots els treballs publicats reporten capes p…

òxids de cadmi i zinc:FÍSICA [UNESCO]creixement cristal·líUNESCO::FÍSICA
researchProduct