0000000001188450

AUTHOR

R. Virot

Johnson-Nyquist Noise Effects in Neutron Electric-Dipole-Moment Experiments

Magnetic Johnson-Nyquist noise (JNN) originating from metal electrodes, used to create a static electric field in neutron electric-dipole-moment (nEDM) experiments, may limit the sensitivity of measurements. We present here the first dedicated study on JNN applied to a large-scale long-measurement-time experiment with the implementation of a co-magnetometry. In this study, we derive surface- and volume-averaged root-mean-square normal noise amplitudes at a certain frequency bandwidth for a cylindrical geometry. In addition, we model the source of noise as a finite number of current dipoles and demonstrate a method to simulate temporal and three-dimensional spatial dependencies of JNN. The c…

research product

Data Blinding for the nEDM Experiment at PSI

Psychological bias towards, or away from, prior measurements or theory predictions is an intrinsic threat to any data analysis. While various methods can be used to try to avoid such a bias, e.g. actively avoiding looking at the result, only data blinding is a traceable and trustworthy method that can circumvent the bias and convince a public audience that there is not even an accidental psychological bias. Data blinding is nowadays a standard practice in particle physics, but it is particularly difficult for experiments searching for the neutron electric dipole moment (nEDM), as several cross measurements, in particular of the magnetic field, create a self-consistent network into which it …

research product

Measurement of the permanent electric dipole moment of the neutron

We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey’s method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a 199Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magne…

research product

nEDM experiment at PSI : data-taking strategy and sensitivity of the dataset

We report on the strategy used to optimize the sensitivity of our search for a neutron electric dipole moment at the Paul Scherrer Institute. Measurements were made upon ultracold neutrons stored within a single chamber at the heart of our apparatus. A mercury cohabiting magnetometer together with an array of cesium magnetometers were used to monitor the magnetic field, which was controlled and shaped by a series of precision field coils. In addition to details of the setup itself, we describe the chosen path to realize an appropriate balance between achieving the highest statistical sensitivity alongside the necessary control on systematic effects. The resulting irreducible sensitivity is …

research product

Statistical sensitivity of the nEDM apparatus at PSI to n − n′ oscillations

The neutron and its hypothetical mirror counterpart, a sterile state degenerate in mass, could spontaneously mix in a process much faster than the neutron β-decay. Two groups have performed a series of experiments in search of neutron – mirror-neutron (n − n′) oscillations. They reported no evidence, thereby setting stringent limits on the oscillation time τnn′. Later, these data sets have been further analyzed by Berezhiani et al.(2009–2017), and signals, compatible with n − n′ oscillations in the presence of mirror magnetic fields, have been reported. The Neutron Electric Dipole Moment Collaboration based at the Paul Scherrer Institute performed a new series of experiments to further test…

research product

Magnetic field uniformity in neutron electric dipole moment experiments

© 2019 American Physical Society. Magnetic-field uniformity is of the utmost importance in experiments to measure the electric dipole moment of the neutron. A general parametrization of the magnetic field in terms of harmonic polynomial modes is proposed, going beyond the linear-gradients approximation. We review the main undesirable effects of nonuniformities: depolarization of ultracold neutrons and Larmor frequency shifts of neutrons and mercury atoms. The theoretical predictions for these effects were verified by dedicated measurements with the single-chamber neutron electric-dipole-moment apparatus installed at the Paul Scherrer Institute. ispartof: Physical Review A vol:99 issue:4 sta…

research product

The n2EDM experiment at the Paul Scherrer Institute

We present the new spectrometer for the neutron electric dipole moment (nEDM) search at the Paul Scherrer Institute (PSI), called n2EDM. The setup is at room temperature in vacuum using ultracold neutrons. n2EDM features a large UCN double storage chamber design with neutron transport adapted to the PSI UCN source. The design builds on experience gained from the previous apparatus operated at PSI until 2017. An order of magnitude increase in sensitivity is calculated for the new baseline setup based on scalable results from the previous apparatus, and the UCN source performance achieved in 2016.

research product

Improved determination of the β−ν¯e angular correlation coefficient a in free neutron decay with the aSPECT spectrometer

We report on a precise measurement of the electron-antineutrino angular correlation ($a$ coefficient) in free neutron beta-decay from the $a$SPECT experiment. The $a$ coefficient is inferred from the recoil energy spectrum of the protons which are detected in 4$\pi$ by the $a$SPECT spectrometer using magnetic adiabatic collimation with an electrostatic filter. Data are presented from a 100 days run at the Institut Laue Langevin in 2013. The sources of systematic errors are considered and included in the final result. We obtain $a = -0.10430(84)$ which is the most precise measurement of the neutron $a$ coefficient to date. From this, the ratio of axial-vector to vector coupling constants is …

research product

Mapping of the magnetic field to correct systematic effects in a neutron electric dipole moment experiment

Experiments dedicated to the measurement of the electric dipole moment of the neutron require outstanding control of the magnetic-field uniformity. The neutron electric dipole moment (nEDM) experiment at the Paul Scherrer Institute uses a Hg199 co-magnetometer to precisely monitor temporal magnetic-field variations. This co-magnetometer, in the presence of field nonuniformity, is, however, responsible for the largest systematic effect of this measurement. To evaluate and correct that effect, offline measurements of the field nonuniformity were performed during mapping campaigns in 2013, 2014, and 2017. We present the results of these campaigns, and the improvement the correction of this eff…

research product