0000000001188452

AUTHOR

E. Wursten

showing 18 related works from this author

LC circuit mediated sympathetic cooling of a proton via image currents

2021

Abstract Efficient cooling of trapped charged particles is essential in many fundamental physics experiments, for high-precision metrology, and for quantum technology. Until now, ion-ion coupling for sympathetic cooling or quantum state control has been limited to ion species with accessible optical transitions or has required close-range Coulomb interactions. To overcome this limitation and further develop scalable quantum control techniques, there has been a sustained desire to extend laser-cooling techniques to particles in macroscopically separated traps, opening quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions, and antimatter p…

Sympathetic coolingMaterials scienceProtonbusiness.industryOptoelectronicsPhysics::Atomic PhysicsLC circuitbusiness
researchProduct

Direct limits on the interaction of antiprotons with axion-like dark matter

2019

Astrophysical observations indicate that there is roughly five times more dark matter in the Universe than ordinary baryonic matter, with an even larger amount of the Universe's energy content due to dark energy. So far, the microscopic properties of these dark components have remained shrouded in mystery. In addition, even the five percent of ordinary matter in our Universe has yet to be understood, since the Standard Model of particle physics lacks any consistent explanation for the predominance of matter over antimatter. Inspired by these central problems of modern physics, we present here a direct search for interactions of antimatter with dark matter, and place direct constraints on th…

PhysicsParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)MultidisciplinaryAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsDark matterFOS: Physical sciences01 natural sciencesPhysics - Atomic PhysicsStandard ModelBaryonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Baryon asymmetryOrders of magnitude (time)AntiprotonAntimatter0103 physical sciencesPräzisionsexperimente - Abteilung Blaum010306 general physicsAxionParticle Physics - ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment

2020

An array of 16 laser-pumped scalar Cs magnetometers was part of the neutron electric dipole moment (nEDM) experiment taking data at the Paul Scherrer Institute in 2015 and 2016. It was deployed to measure the gradients of the experiment's magnetic field and to monitor their temporal evolution. The originality of the array lies in its compact design, in which a single near-infrared diode laser drives all magnetometers that are located in a high-vacuum chamber, with a selection of the sensors mounted on a high-voltage electrode. We describe details of the Cs sensors' construction and modes of operation, emphasizing the accuracy and sensitivity of the magnetic-field readout. We present two app…

experimental methodsAtomic Physics (physics.atom-ph)EXPERIMENTAL LIMITPhysics Atomic Molecular & Chemicalnucl-ex01 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics - Experimentlaw.inventionHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)n: spinNuclear ExperimentPhysicsn: electric momentPhysicsincluding interactions with strong fields and short pulsesMagnetic fieldAtomic and molecular processes in external fieldsPhysical SciencesParticle Physics - ExperimentNeutron electric dipole momentMagnetometerOther Fields of PhysicsFOS: Physical sciencesmagnetic field: gradient[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]physics.atom-phOptics0103 physical sciencesNeutronNuclear Physics - ExperimentSensitivity (control systems)010306 general physicsDiodeScience & Technology010308 nuclear & particles physicsbusiness.industryhep-exScalar (physics)OpticssensitivityLaser[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]laserfield strengthtime dependencebusinessexperimental results
researchProduct

Data Blinding for the nEDM Experiment at PSI

2020

Psychological bias towards, or away from, prior measurements or theory predictions is an intrinsic threat to any data analysis. While various methods can be used to try to avoid such a bias, e.g. actively avoiding looking at the result, only data blinding is a traceable and trustworthy method that can circumvent the bias and convince a public audience that there is not even an accidental psychological bias. Data blinding is nowadays a standard practice in particle physics, but it is particularly difficult for experiments searching for the neutron electric dipole moment (nEDM), as several cross measurements, in particular of the magnetic field, create a self-consistent network into which it …

Nuclear and High Energy Physicsdata analysis methodPhysics - Instrumentation and DetectorsOffset (computer science)BlindingNeutron electric dipole momentOther Fields of PhysicsFOS: Physical sciencesSeparate analysis[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesHigh Energy Physics - Experimentphysics.data-anHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniques010306 general physicsNuclear Experimentphysics.ins-detPhysicsn: electric moment010308 nuclear & particles physicshep-exProbability and statisticsInstrumentation and Detectors (physics.ins-det)Data setSpecial Article - New Tools and TechniquesTrustworthinessPhysics - Data Analysis Statistics and ProbabilityAlgorithmData Analysis Statistics and Probability (physics.data-an)Particle Physics - Experiment[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an]
researchProduct

Measurement of the permanent electric dipole moment of the neutron

2020

We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey’s method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a 199Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magne…

Physics - Instrumentation and DetectorsMagnetometerFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesMeasure (mathematics)S017EDMlaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)statistical analysislawcesium0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]time reversal: invarianceStatistical analysisNeutronNuclear Physics - ExperimentPhysics::Atomic Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniques010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsn: electric momentInstrumentation and Detectors (physics.ins-det)Cesium vaporMagnetic fieldElectric dipole moment* Automatic Keywords *Ultracold neutronsElementary Particles and FieldshistoryAtomic physicstime reversal: violationmagnetic field: oscillationParticle Physics - Experiment
researchProduct

nEDM experiment at PSI : data-taking strategy and sensitivity of the dataset

2018

We report on the strategy used to optimize the sensitivity of our search for a neutron electric dipole moment at the Paul Scherrer Institute. Measurements were made upon ultracold neutrons stored within a single chamber at the heart of our apparatus. A mercury cohabiting magnetometer together with an array of cesium magnetometers were used to monitor the magnetic field, which was controlled and shaped by a series of precision field coils. In addition to details of the setup itself, we describe the chosen path to realize an appropriate balance between achieving the highest statistical sensitivity alongside the necessary control on systematic effects. The resulting irreducible sensitivity is …

PhysicsPhysics - Instrumentation and DetectorsNeutron electric dipole moment010308 nuclear & particles physicsbusiness.industryMagnetometerPhysicsQC1-999Statistical sensitivityFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesMagnetic fieldlaw.inventionOpticslaw0103 physical sciencesUltracold neutrons[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsbusinessNuclear ExperimentSingle chamber
researchProduct

Magnetic field uniformity in neutron electric dipole moment experiments

2019

© 2019 American Physical Society. Magnetic-field uniformity is of the utmost importance in experiments to measure the electric dipole moment of the neutron. A general parametrization of the magnetic field in terms of harmonic polynomial modes is proposed, going beyond the linear-gradients approximation. We review the main undesirable effects of nonuniformities: depolarization of ultracold neutrons and Larmor frequency shifts of neutrons and mercury atoms. The theoretical predictions for these effects were verified by dedicated measurements with the single-chamber neutron electric-dipole-moment apparatus installed at the Paul Scherrer Institute. ispartof: Physical Review A vol:99 issue:4 sta…

Physics - Instrumentation and DetectorsNeutron electric dipole momentmercury: atommeasurement methodsFOS: Physical sciencesHarmonic polynomial01 natural sciences7. Clean energyHigh Energy Physics - Experiment010305 fluids & plasmasHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronPhysics::Atomic Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentFundamental conceptsQCPhysicsLarmor precessionMeasurement methodn: electric momentn: depolarizationmathematical methodsInstrumentation and Detectors (physics.ins-det)Magnetic fieldComputational physicsElectric dipole momentmagnetic field: parametrizationUltracold neutrons
researchProduct

Measurement of ultra-low heating rates of a single antiproton in a cryogenic Penning trap

2019

Physical review letters 122(4), 043201 (2019). doi:10.1103/PhysRevLett.122.043201

Electric fieldsField noiseCryogenicsAtomic Physics (physics.atom-ph)Penning trapOther Fields of PhysicsGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences530physics.atom-phPhysics - Atomic PhysicsSpectral densityNoise spectral densityTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesddc:530010306 general physicsPhysicsComputer Science::Information RetrievalSpectral densityComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Penning trapOrders of magnitudeAntiprotonQuantum transition rateDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikAtomic physicsPräzisionsexperimente - Abteilung BlaumIon traps
researchProduct

Gravitational depolarization of ultracold neutrons : comparison with data

2015

We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsField (physics)FOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsGravitationHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronDetectors and Experimental Techniques010306 general physicsQCLarmor precessionPhysics010308 nuclear & particles physics1420DhDepolarizationInstrumentation and Detectors (physics.ins-det)Magnetic field gradient1130Ernumbers: 1340Em0755GeElectric dipole momentPhysics::Space PhysicsUltracold neutronsAtomic physics
researchProduct

The n2EDM experiment at the Paul Scherrer Institute

2018

We present the new spectrometer for the neutron electric dipole moment (nEDM) search at the Paul Scherrer Institute (PSI), called n2EDM. The setup is at room temperature in vacuum using ultracold neutrons. n2EDM features a large UCN double storage chamber design with neutron transport adapted to the PSI UCN source. The design builds on experience gained from the previous apparatus operated at PSI until 2017. An order of magnitude increase in sensitivity is calculated for the new baseline setup based on scalable results from the previous apparatus, and the UCN source performance achieved in 2016.

Neutron transportPhysics - Instrumentation and DetectorsNeutron electric dipole momentPhysics::Instrumentation and DetectorsQC1-999FOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Chamber design0103 physical sciencesNeutronspectrometer: design[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsn: electric momentSpectrometer010308 nuclear & particles physicsPhysicsInstrumentation and Detectors (physics.ins-det)sensitivityMeasuring instrumentUltracold neutronsNucleonperformanceInternational Workshop on Particle Physics at Neutron Sources 2018, May 2018, Grenoble, France
researchProduct

Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penn…

2021

We constrain the coupling between axionlike particles (ALPs) and photons, measured with the superconducting resonant detection circuit of a cryogenic Penning trap. By searching the noise spectrum of our fixed-frequency resonant circuit for peaks caused by dark matter ALPs converting into photons in the strong magnetic field of the Penning-trap magnet, we are able to constrain the coupling of ALPs with masses around $2.7906-2.7914\,\textrm{neV/c}^2$ to $g_{a\gamma}< 1 \times 10^{-11}\,\textrm{GeV}^{-1}$. This is more than one order of magnitude lower than the best laboratory haloscope and approximately 5 times lower than the CERN axion solar telescope (CAST), setting limits in a mass and cou…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonAtomic Physics (physics.atom-ph)Dark matterOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomyphysics.atom-ph01 natural sciences7. Clean energyPhysics - Atomic PhysicsNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Physics::Atomic Physics010306 general physicsParticle Physics - PhenomenologySuperconductivityPhysicshep-phPenning trapCoupling (probability)Magnetic fieldHigh Energy Physics - PhenomenologyAntiprotonastro-ph.COPräzisionsexperimente - Abteilung BlaumCERN Axion Solar TelescopeAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

Superconducting Solenoid System with Adjustable Shielding Factor for Precision Measurements of the Properties of the Antiproton

2019

Physical review applied 12(4), 044012 (2019). doi:10.1103/PhysRevApplied.12.044012

MAGNETIC-MOMENTSpeichertechnik - Abteilung BlaumPenning trapNuclear engineeringGeneral Physics and Astronomy02 engineering and technologyPROTON53001 natural sciencesNoise (electronics)Physics AppliedTrap (computing)External magnetic field0103 physical sciencesPENNING TRAP TECHNIQUEFACILITYddc:530Physics::Atomic PhysicsSolenoidsDetectors and Experimental TechniquesNuclear Experiment010306 general physicsSuperconductivityPhysicsScience & TechnologyLarge Hadron ColliderPhysics021001 nanoscience & nanotechnologyMagnetic fieldElectromagnetic coilAntiprotonPhysical SciencesMagnetic momentsElectromagnetic shieldingPhysics::Accelerator PhysicsCharge-to-mass ratiosDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikATOMIC MASSPARTICLE0210 nano-technologyMASS MEASUREMENTSPhysical Review Applied
researchProduct

Sympathetic cooling of a trapped proton mediated by an LC circuit

2021

Efficient cooling of trapped charged particles is essential to many fundamental physics experiments1,2, to high-precision metrology3,4 and to quantum technology5,6. Until now, sympathetic cooling has required close-range Coulomb interactions7,8, but there has been a sustained desire to bring laser-cooling techniques to particles in macroscopically separated traps5,9,10, extending quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions and antimatter. Here we demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps. The traps are connected by a superconducting LC circuit that enable…

Sympathetic coolingProtonAtomic Physics (physics.atom-ph)FOS: Physical sciencesLC circuit7. Clean energy01 natural sciencesArticle010305 fluids & plasmasIonPhysics - Atomic PhysicsPhysics in General0103 physical sciencesAtomic and molecular physicsPhysics::Atomic Physics010306 general physicsPhysicsQuantum PhysicsMultidisciplinaryCharged particleQuantum technologyAntiprotonAntimatterExotic atoms and moleculesddc:500Atomic physicsPräzisionsexperimente - Abteilung BlaumQuantum Physics (quant-ph)
researchProduct

Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

2015

We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a $|B_0|=1~\text{\mu T}$ magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCN of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of $1.1~\text{pT/cm}$. This novel combination …

Physics - Instrumentation and DetectorsDephasingGeneral Physics and AstronomyFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesResonance (particle physics)Nuclear physics0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentQCPhysicsNeutrons010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Models TheoreticalNeutron spectroscopyMagnetic fieldCold TemperatureElectric dipole momentKineticsSpin echoUltracold neutronsAtomic physicsGravitationPhysical review letters
researchProduct

A search for neutron to mirror-neutron oscillations using the nEDM apparatus at PSI

2021

It has been proposed that there could be a mirror copy of the standard model particles, restoring the parity symmetry in the weak interaction on the global level. Oscillations between a neutral standard model particle, such as the neutron, and its mirror counterpart could potentially answer various standing issues in physics today. Astrophysical studies and terrestrial experiments led by ultracold neutron storage measurements have investigated neutron to mirror-neutron oscillations and imposed constraints on the theoretical parameters. Recently, further analysis of these ultracold neutron storage experiments has yielded statistically significant anomalous signals that may be interpreted as …

Nuclear and High Energy PhysicsNeutron electric dipole momentmedia_common.quotation_subjectmagnetic fieldWeak interaction[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Astronomy & Astrophysics01 natural sciences7. Clean energyAsymmetryrotationPhysics Particles & FieldsELECTRIC-DIPOLE MOMENTweak interaction0103 physical sciencesDark matterDARK-MATTERNeutron010306 general physicsnumerical calculationsmirrorNuclear mattermedia_commonoscillation: timePhysicsn: electric momentProperties of neutrons Ultracold neutrons Nuclear matter Mirror matter Dark matter Particle symmetriesScience & TechnologyProperties of neutronsParticle symmetries010308 nuclear & particles physicsparity: symmetryPhysicsNuclear matter[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]lcsh:QC1-999Mirror matterMagnetic fieldMODELPhysics Nuclear[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physical SciencesUltracold neutronsAtomic physicsUltracold neutronsMirror matterasymmetrylcsh:PhysicsPhysics Letters B
researchProduct

Mapping of the magnetic field to correct systematic effects in a neutron electric dipole moment experiment

2021

Experiments dedicated to the measurement of the electric dipole moment of the neutron require outstanding control of the magnetic-field uniformity. The neutron electric dipole moment (nEDM) experiment at the Paul Scherrer Institute uses a Hg199 co-magnetometer to precisely monitor temporal magnetic-field variations. This co-magnetometer, in the presence of field nonuniformity, is, however, responsible for the largest systematic effect of this measurement. To evaluate and correct that effect, offline measurements of the field nonuniformity were performed during mapping campaigns in 2013, 2014, and 2017. We present the results of these campaigns, and the improvement the correction of this eff…

magnetic field: spatial distributionn: electric momentmercuryPhysics - Instrumentation and Detectorsmeasurement methodsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Physics::Atomic PhysicsNuclear Experiment (nucl-ex)Nuclear Experiment
researchProduct

Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields

2017

We report on a search for ultralow-mass axionlike dark matter by analyzing the ratio of the spinprecession frequencies of stored ultracold neutrons and 199Hg atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range 10−24 ≤ ma ≤ 10−17 eV. Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40. ispartof: Physical Review X vol:7 issue:…

axionsCosmology and Nongalactic Astrophysics (astro-ph.CO)[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear TheoryAtomic Physics (physics.atom-ph)Physics::Instrumentation and Detectors[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]QC1-999FOS: Physical sciencesmagnetic field[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]dark matterPhysics - Atomic PhysicsNuclear Theory (nucl-th)High Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]axion: couplingNuclear Experiment (nucl-ex)gluon: couplingNuclear Experiment[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]spin: precessionaxion: dark mattern: electric momentnucleus: spinatomPhysicsHigh Energy Physics::Phenomenologyspin precessionoscillation[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]neutron electric dipole momentelectric fieldHigh Energy Physics - PhenomenologyS029IAN[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]axion: mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]experimental resultsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review X
researchProduct

Search for an interaction mediated by axion-like particles with ultracold neutrons at the PSI

2023

We report on a search for a new, short-range, spin-dependent interaction using a modified version of the experimental apparatus used to measure the permanent neutron electric dipole moment at the Paul Scherrer Institute. This interaction, which could be mediated by axion-like particles, concerned the unpolarized nucleons (protons and neutrons) near the material surfaces of the apparatus and polarized ultracold neutrons stored in vacuum. The dominant systematic uncertainty resulting from magnetic-field gradients was controlled to an unprecedented level of approximately 4 pT/cm using an array of optically-pumped cesium vapor magnetometers and magnetic-field maps independently recorded using a…

FOS: Physical sciencesNuclear Experiment (nucl-ex)Nuclear Experiment
researchProduct