0000000001188928

AUTHOR

S. Johnston

showing 11 related works from this author

Accurate Determination of the Neutron Skin Thickness of Pb208 through Parity-Violation in Electron Scattering

2021

We report a precision measurement of the parity-violating asymmetry A_{PV} in the elastic scattering of longitudinally polarized electrons from ^{208}Pb. We measure A_{PV}=550±16(stat)±8(syst) parts per billion, leading to an extraction of the neutral weak form factor F_{W}(Q^{2}=0.00616  GeV^{2})=0.368±0.013. Combined with our previous measurement, the extracted neutron skin thickness is R_{n}-R_{p}=0.283±0.071  fm. The result also yields the first significant direct measurement of the interior weak density of ^{208}Pb: ρ_{W}^{0}=-0.0796±0.0036(exp)±0.0013(theo)  fm^{-3} leading to the interior baryon density ρ_{b}^{0}=0.1480±0.0036(exp)±0.0013(theo)  fm^{-3}. The measurement accurately co…

Elastic scatteringPhysicsEquation of state (cosmology)media_common.quotation_subjectForm factor (quantum field theory)General Physics and Astronomy01 natural sciencesAsymmetry0103 physical sciencesSaturation (graph theory)NeutronAtomic physics010306 general physicsElectron scatteringEnergy (signal processing)media_commonPhysical Review Letters
researchProduct

Energy calibration of the NEXT-White detector with 1% resolution near Q ββ of 136Xe

2019

Excellent energy resolution is one of the primary advantages of electroluminescent high pressure xenon TPCs, and searches for rare physics events such as neutrinoless double-beta decay ($\beta\beta0\nu$) require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for $\beta\beta0\nu$ searches.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysical measurementsPhysics::Instrumentation and DetectorsDark Matter and Double Beta DecayFísica -- Mesuramentschemistry.chemical_elementBioengineeringAtomic01 natural sciencesMathematical SciencesNuclear physicsParticle and Plasma PhysicsXenonAffordable and Clean Energy0103 physical sciencesDark Matter and Double Beta Decay (experiments)CalibrationNuclearlcsh:Nuclear and particle physics. Atomic energy. RadioactivityCalibratge010306 general physicsMathematical PhysicsPhysicsQuantum Physics010308 nuclear & particles physicsDetectorResolution (electron density)MolecularDetectorsNuclear & Particles PhysicsFull width at half maximumchemistryBeta (plasma physics)Physical SciencesCalibrationlcsh:QC770-798High Energy Physics::ExperimentNeutrinoEnergy (signal processing)
researchProduct

New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei

2012

We have measured the beam-normal single-spin asymmetry $A_n$ in the elastic scattering of 1-3 GeV transversely polarized electrons from $^1$H and for the first time from $^4$He, $^{12}$C, and $^{208}$Pb. For $^1$H, $^4$He and $^{12}$C, the measurements are in agreement with calculations that relate $A_n$ to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the $^{208}$Pb result is significantly smaller than the corresponding prediction using the same formalism. These results suggest that a systematic set of new $A_n$ measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.

Elastic scatteringPhysics010308 nuclear & particles physicsScatteringmedia_common.quotation_subjectFOS: Physical sciencesGeneral Physics and AstronomyElastic electronchemistry.chemical_elementElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAsymmetryAmplitudechemistryExcited state0103 physical sciencesNuclear Experiment (nucl-ex)Atomic physics010306 general physicsNuclear ExperimentNuclear ExperimentHeliummedia_common
researchProduct

MOESM1 of Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Act…

2016

Additional file 1. IPCRG scaling up activities.

researchProduct

Demonstration of the event identification capabilities of the NEXT-White detector

2019

[EN] In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a 228Th calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 ± 1.5 stat ± 0.3 sys% for a background acceptance of 20.6 ± …

Nuclear and High Energy PhysicsPhysical measurementsPhysics - Instrumentation and DetectorsMonte Carlo methodExtrapolationFísica -- MesuramentsFOS: Physical sciences7. Clean energy01 natural sciencesAtomicMathematical SciencesHigh Energy Physics - ExperimentNuclear physicsTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)Particle and Plasma PhysicsDouble beta decay0103 physical sciencesDark Matter and Double Beta Decay (experiments)Calibrationlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclearCalibratge010306 general physicsNuclear ExperimentMathematical PhysicsPhysicsQuantum Physics010308 nuclear & particles physicsDetectorMolecularDetectorsInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsCalibrationPhysical Scienceslcsh:QC770-798High Energy Physics::ExperimentSensitivity (electronics)Event (particle physics)Energy (signal processing)
researchProduct

Radiogenic backgrounds in the NEXT double beta decay experiment

2019

[EN] Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterraneo de Canfranc with xenon depleted in Xe-136 are analyzed to derive a total background rate of (0.84 +/- 0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEX…

Nuclear and High Energy PhysicsPhysical measurementsPhysics - Instrumentation and DetectorsDark Matter and Double Beta DecayDark matterFísica -- Mesuramentschemistry.chemical_elementFOS: Physical sciencesRadon7. Clean energy01 natural sciencesAtomicMathematical SciencesHigh Energy Physics - ExperimentNuclear physicsTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)XenonParticle and Plasma PhysicsDouble beta decayDark matter and double beta decay (experiments)0103 physical sciencesDark Matter and Double Beta Decay (experiments)Dark Matterlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear010306 general physicsDouble Beta DecayNatural radioactivityMathematical PhysicsPhysicsQuantum PhysicsRadiogenic nuclide010308 nuclear & particles physicsDetectorMolecularDetectorsInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicschemistryPhysical Scienceslcsh:QC770-798Event (particle physics)
researchProduct

SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

2021

Abstract Background Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18–49, 50–69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results NNVs were more favourable in su…

MaleCOVID-19 Vaccinesafe surgery; vaccination modelling; COVID-19Vascular damage Radboud Institute for Health Sciences [Radboudumc 16]MULTICENTERComorbidity030230 surgery0302 clinical medicinephase 3 clinical trial (topic)Case fatality rateProspective StudiesSARS-CoV-2 Vaccination Safe surgeryCOVID-19/epidemiologySARS-CoV-2 ; vaccination ; safe surgeryeducation.field_of_studycase fatality rateVaccinationVaccinationAdolescent; Adult; Aged; COVID-19; COVID-19 Vaccines; Comorbidity; Elective Surgical Procedures; Female; Humans; Male; Middle Aged; Postoperative Complications; Preoperative Period; Prospective Studies; SARS-CoV-2; Vaccination; Young Adulthealth care policyElective Surgical Procedures030220 oncology & carcinogenesisvaccination modellingPreoperative PeriodCOVID-19; SARS-CoV-2; cancer; vaccination; outcome; mortality; infection; modellingCohort studyprospective studyHumanmedicine.medical_specialtyArticle03 medical and health sciencesSARS-CoV-2 vaccinationSDG 3 - Good Health and Well-beingCOVID-19 Vaccines/pharmacologyHumansVaccination/methodsElective surgeryeducationAgedScience & TechnologyElective Surgical Procedureadult; aged; Article; cancer grading; cancer surgery; case fatality rate; computer assisted tomography; elective surgery; female; follow up; health care policy; human; incidence; infection rate; infection risk; major clinical study; male; middle aged; mortality; outcome assessment; phase 3 clinical trial (topic); preoperative care; prospective study; sensitivity analysis; seroprevalence; Severe acute respiratory syndrome coronavirus 2; vaccination; young adult; COVID-19; COVID-19 Vaccines; Comorbidity; Elective Surgical Procedures; Postoperative Complications; Preoperative Period; SARS-CoV-2; Vaccination; surgery.Cura preoperatòriamajor clinical studymortalityinfectionProspective StudieincidenceSurgeryHuman medicinePostoperative Complication610 Medizin und GesundheitAcademicSubjects/MED00910Settore MED/18 - CHIRURGIA GENERALESettore MED/29 - CHIRURGIA MAXILLOFACCIALEcomputer assisted tomographyESTUDOS PROSPECTIVOSsurgerysafe surgeryPostoperative Complicationssensitivity analysisSevere acute respiratory syndrome coronavirus 2preoperative careVacunacióProspective cohort studyseroprevalenceIncidence (epidemiology)covidElective Surgical Procedures/methodsMiddle Agedcancer gradingCOVID vaccinationoutcome/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingSARS-CoV-2; vaccination; surgeryOriginal ArticleFemalecancer surgeryAcademicSubjects/MED00010Life Sciences & BiomedicineAdultCOVID-19 VaccinesAdolescentinternational prospective cohort studyPostoperative Complications/prevention & controlPopulationinfection rateSARS-CoV-2/immunologyNOmodellingYoung Adultmedicinefollow upcancerddc:610infection riskoutcome assessmentLS7_4business.industrySARS-CoV-2Number needed to vaccinatePreoperative careCOVID-193126 Surgery anesthesiology intensive care radiologySettore MED/18Reconstructive and regenerative medicine Radboud Institute for Health Sciences [Radboudumc 10]elective surgeryEmergency medicinebusiness[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyThe British Journal of Surgery
researchProduct

Energy calibration of the NEXT-White detector with 1% resolution near Qßß of 136Xe

2019

Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay (ßß0¿), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for ßß0¿ searches. [Figure not available: see fulltext.

researchProduct

Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield

2020

[EN] High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have m…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsFOS: Physical sciencesLibrary scienceApplied Physics (physics.app-ph)7. Clean energy01 natural sciencesAtomicPartícules (Física nuclear)TECNOLOGIA ELECTRONICAParticle and Plasma PhysicsDark Matter and Double Beta Decay (experiments)0103 physical sciencesmedia_common.cataloged_instancelcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclearEuropean union010306 general physicsMathematical Physicsmedia_commonParticles (Nuclear physics)PhysicsQuantum PhysicsPhotons010308 nuclear & particles physicsPreventionRare event detectionEuropean researchMolecularInstrumentation and Detectors (physics.ins-det)Physics - Applied PhysicsParticle correlations and fluctuationsNuclear & Particles PhysicsDouble beta decayFotonsDoble desintegració betaRare decayElectroluminescence13. Climate actionPhoton productionlcsh:QC770-798ElectroluminescènciaNational laboratoryJournal of High Energy Physics
researchProduct

Calibration of the NEXT-White detector using $^{83m}\mathrm{Kr}$ decays

2018

The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. NEXT-White has been operating at Laboratorio Subterr\'aneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed with $^{83m}\mathrm{Kr}$ decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event position which is mainly caused by variations in solid angle coverage. After producing calibration maps to correct for both effects we measure an excellen…

High Energy Physics - Experiment (hep-ex)Physics - Instrumentation and DetectorsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)High Energy Physics - Experiment
researchProduct

Mitigation of backgrounds from cosmogenic 137Xe in xenon gas experiments using 3He neutron capture

2021

136Xe is used as the target medium for many experiments searching for 0¿ßß. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of 137Xe created by the capture of neutrons on 136Xe. This isotope decays via beta decay with a half-life of 3.8 min and a Q ß of ~4.16 MeV. This work proposes and explores the concept of adding a small percentage of 3He to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from 137Xe …

researchProduct