0000000001189676

AUTHOR

Dmytro Iakubovskyi

showing 3 related works from this author

A White Paper on keV sterile neutrino Dark Matter

2017

We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrin…

AstrofísicaSterile neutrinocosmological modelCold dark mattercosmological neutrinosPhysics beyond the Standard Model[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matter theory01 natural sciencesCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)White paperHigh Energy Physics - Phenomenology (hep-ph)X-RAY-EMISSIONMETALLIC MAGNETIC CALORIMETERSQUANTUM-FIELD THEORY[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: dark matterCosmological neutrinos; Dark matter experiments; Dark matter theory; Particle physics - cosmology connection010303 astronomy & astrophysicsPhysicsdark matter theorynew physicsDOUBLE-BETA-DECAYhep-phneutrino: sterileCosmological neutrinos; Dark matter experiments; Dark matter theory; Particle physics - cosmology connection; Astronomy and AstrophysicsNuclear & Particles PhysicsHigh Energy Physics - Phenomenologyneutrino: detectorDark matter experimentsparticle physics - cosmology connectionastro-ph.COMILKY-WAY SATELLITESCosmological neutrinos3.5 KEV LINENeutrinoParticle Physics - ExperimentAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)astro-ph.GADark matterLY-ALPHA FORESTreviewFOS: Physical sciencesContext (language use)neutrino: productionX-raySettore FIS/05 - Astronomia e Astrofisica[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]RIGHT-HANDED NEUTRINOS0103 physical sciencesAstronomical And Space Sciencesnumerical calculationsDark matter experimentXMM-NEWTON OBSERVATIONSneutrino: modelParticle Physics - PhenomenologyDWARF SPHEROIDAL GALAXYCosmologia010308 nuclear & particles physicshep-exdark matter experimentsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsAtomic Molecular Nuclear Particle And Plasma PhysicsCosmological neutrinoAstrophysics - Astrophysics of Galaxies13. Climate actionAstrophysics of Galaxies (astro-ph.GA)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Particle physics - cosmology connection[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentneutrino: oscillation[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Journal of Cosmology and Astroparticle Physics
researchProduct

Predicted gamma-ray image of SN 1006 due to inverse Compton emission

2009

We propose a method to synthesize the inverse Compton (IC) gamma-ray image of a supernova remnant starting from the radio (or hard X-ray) map and using results of the spatially resolved X-ray spectral analysis. The method is successfully applied to SN 1006. We found that synthesized IC gamma-ray images of SN 1006 show morphology in nice agreement with that reported by the H.E.S.S. collaboration. The good correlation found between the observed very-high energy gamma-ray and X-ray/radio appearance can be considered as an evidence that the gamma-ray emission of SN 1006 observed by H.E.S.S. is leptonic in origin, though the hadronic origin may not be excluded.

shock waveCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaHadronInverseISM: individual: SN 1006FOS: Physical sciencesAstrophysicsImage (mathematics)ISM: cosmic rayACCELERATION OF PARTICLESINDIVIDUAL: SN 1006 [ISM]//purl.org/becyt/ford/1 [https]Spectral analysisSUPERNOVA REMNANTS [ISM]Supernova remnantacceleration of particleISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spatially resolvedGamma rayAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]radiation mechanisms: non-thermalAstronomíaCOSMIC RAYS [ISM]Space and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS
researchProduct

Thermal emission, shock modification, and X-ray emitting ejecta in SN 1006

2009

Efficient particle acceleration can modify the structure of supernova remnants. In this context we present the results of the combined analysis of the XMM-Newton EPIC archive observations of SN 1006. We aim at describing the spatial distribution of the physical and chemical properties of the X-ray emitting plasma at the shock front. We investigate the contribution of thermal and non-thermal emission to the X-ray spectrum at the rim of the remnant to study how the acceleration processes affect the X-ray emitting plasma. We perform a spatially resolved spectral analysis on a set of regions covering the whole rim of the shell and we exploit the results of the spectral analysis to produce a cou…

Astrophysics::High Energy Astrophysical PhenomenaCiencias FísicasFOS: Physical sciencesContext (language use)AstrophysicsISM: individual objects: SN 1006ISM [X-RAYS]//purl.org/becyt/ford/1 [https]ThermalSUPERNOVA REMNANTS [ISM]EjectaISM: supernova remnantAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsPlasma//purl.org/becyt/ford/1.3 [https]X-rays: ISMShock (mechanics)Particle accelerationAstronomíaSupernovaINDIVIDUAL OBJECTS: SN 1006 [ISM]Space and Planetary ScienceMagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS
researchProduct