0000000001192593
AUTHOR
Jinhua Zhang
Periodic measures and partially hyperbolic homoclinic classes
In this paper, we give a precise meaning to the following fact, and we prove it: $C^1$-open and densely, all the non-hyperbolic ergodic measures generated by a robust cycle are approximated by periodic measures. We apply our technique to the global setting of partially hyperbolic diffeomorphisms with one dimensional center. When both strong stable and unstable foliations are minimal, we get that the closure of the set of ergodic measures is the union of two convex sets corresponding to the two possible $s$-indices; these two convex sets intersect along the closure of the set of non-hyperbolic ergodic measures. That is the case for robustly transitive perturbation of the time one map of a tr…
Chaotic dynamics and partial hyperbolicity
The dynamics of hyperbolic systems is considered well understood from topological point of view as well as from stochastic point of view. S. Smale and R. Abraham gave an example showing that, in general, the hyperbolic systems are not dense among all differentiable systems. In 1970s, M. Brin and Y. Pesin proposed a new notion: partial hyperbolicity to release the notion of hyperbolicity. One aim of this thesis is to understand the dynamics of certain partially hyperbolic systems from stochastic point of view as well as from topological point of view. From stochastic point of view, we prove the following results: — There exists an open and dense subset U of robustly transitive nonhyperbolic …
Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence
Let $M$ be a closed 3-manifold which admits an Anosov flow. In this paper we develop a technique for constructing partially hyperbolic representatives in many mapping classes of $M$. We apply this technique both in the setting of geodesic flows on closed hyperbolic surfaces and for Anosov flows which admit transverse tori. We emphasize the similarity of both constructions through the concept of $h$-transversality, a tool which allows us to compose different mapping classes while retaining partial hyperbolicity. In the case of the geodesic flow of a closed hyperbolic surface $S$ we build stably ergodic, partially hyperbolic diffeomorphisms whose mapping classes form a subgroup of the mapping…