0000000001192696
AUTHOR
E. Zientz
Citrate Sensing by the C 4 -Dicarboxylate/Citrate Sensor Kinase DcuS of Escherichia coli : Binding Site and Conversion of DcuS to a C 4 -Dicarboxylate- or Citrate-Specific Sensor
ABSTRACT The histidine protein kinase DcuS of Escherichia coli senses C 4 -dicarboxylates and citrate by a periplasmic domain. The closely related sensor kinase CitA binds citrate, but no C 4 -dicarboxylates, by a homologous periplasmic domain. CitA is known to bind the three carboxylate and the hydroxyl groups of citrate by sites C1, C2, C3, and H. DcuS requires the same sites for C 4 -dicarboxylate sensing, but only C2 and C3 are highly conserved. It is shown here that sensing of citrate by DcuS required the same sites. Binding of citrate to DcuS, therefore, was similar to binding of C 4 -dicarboxylates but different from that of citrate binding in CitA. DcuS could be converted to a C 4 -…
Functioning of DcuC as the C 4 -Dicarboxylate Carrier during Glucose Fermentation by Escherichia coli
ABSTRACT The dcuC gene of Escherichia coli encodes an alternative C 4 -dicarboxylate carrier (DcuC) with low transport activity. The expression of dcuC was investigated. dcuC was expressed only under anaerobic conditions; nitrate and fumarate caused slight repression and stimulation of expression, respectively. Anaerobic induction depended mainly on the transcriptional regulator FNR. Fumarate stimulation was independent of the fumarate response regulator DcuR. The expression of dcuC was not significantly inhibited by glucose, assigning a role to DcuC during glucose fermentation. The inactivation of dcuC increased fumarate-succinate exchange and fumarate uptake by DcuA and DcuB, suggesting a…
Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system.
ABSTRACT In Escherichia coli the genes encoding the anaerobic fumarate respiratory system are transcriptionally regulated by C 4 -dicarboxylates. The regulation is effected by a two-component regulatory system, DcuSR, consisting of a sensory histidine kinase (DcuS) and a response regulator (DcuR). DcuS and DcuR are encoded by the dcuSR genes (previously yjdHG ) at 93.7 min on the calculated E. coli map. Inactivation of the dcuR and dcuS genes caused the loss of C 4 -dicarboxylate-stimulated synthesis of fumarate reductase ( frdABCD genes) and of the anaerobic fumarate-succinate antiporter DcuB ( dcuB gene). DcuS is predicted to contain a large periplasmic domain as the supposed site for C 4…
Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: roles of the three Dcu carriers in uptake and exchange.
In Escherichia coli, two carriers (DcuA and DcuB) for the transport of C4 dicarboxylates in anaerobic growth were known. Here a novel gene dcuC was identified encoding a secondary carrier (DcuC) for C4 dicarboxylates which is functional in anaerobic growth. The dcuC gene is located at min 14.1 of the E. coli map in the counterclockwise orientation. The dcuC gene combines two open reading frames found in other strains of E. coli K-12. The gene product (DcuC) is responsible for the transport of C4 dicarboxylates in DcuA-DcuB-deficient cells. The triple mutant (dcuA dcuB dcuC) is completely devoid of C4-dicarboxylate transport (exchange and uptake) during anaerobic growth, and the bacteria are…
C4-dicarboxylate carriers and sensors in bacteria
AbstractBacteria contain secondary carriers for the uptake, exchange or efflux of C4-dicarboxylates. In aerobic bacteria, dicarboxylate transport (Dct)A carriers catalyze uptake of C4-dicarboxylates in a H+- or Na+-C4-dicarboxylate symport. Carriers of the dicarboxylate uptake (Dcu)AB family are used for electroneutral fumarate:succinate antiport which is required in anaerobic fumarate respiration. The DcuC carriers apparently function in succinate efflux during fermentation. The tripartite ATP-independent periplasmic (TRAP) transporter carriers are secondary uptake carriers requiring a periplasmic solute binding protein. For heterologous exchange of C4-dicarboxylates with other carboxylic …
Genome interdependence in insect-bacterium symbioses
Symbioses between unicellular and multicellular organisms have contributed significantly to the evolution of life on Earth. As exemplified by several studies of bacterium-insect symbioses, modern genomic techniques are providing exciting new information about the molecular basis and the biological roles of these complex relationships, revealing for instance that symbionts have lost many genes for functions that are provided by the host, but that they can provide amino acids that the host cannot synthesize.