0000000001192708
AUTHOR
Matthias Voigt
Surface Modification of Nanoparticles and Nanovesicles via Click-Chemistry
Surface modification of nanocarriers offers the possibility of targeted drug delivery, which is of major interest in modern pharmaceutical science. Click-chemistry affords an easy and fast way to modify the surface with targeting structures under mild reaction conditions. Here we describe our current method for the post-preparational surface modification of multifunctional sterically stabilized (stealth) liposomes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) and inverse electron demand Diels-Alder norbornene-tetrazine cycloaddition (IEDDA). We emphasize the use of these in a one-pot orthogonal reaction for deep investigation on stability and targeting of nanocarriers. As the prod…
Orthogonal Click Conjugation to the Liposomal Surface Reveals the Stability of the Lipid Anchorage as Crucial for Targeting
Synthetic access to multiple surface decorations are a bottleneck in the development of liposomes for receptor mediated targeting. This opens a complex multiparameter space, exploration of which is severely limited in terms of sample numbers and turnaround times. Here, we unlock this technological barrier by a combination of a milligram-scale liposome formulation using dual centrifugation and orthogonal click chemistry on the liposomal surface. Application of these techniques to conceptually new amphiphilic compounds, which feature norbornene and alkyne groups at the apex of sterically stabilizing, hyperbranched polyglycerol moieties, revealed a particular influence of the membrane anchor o…
Spectral optical layer properties of cirrus from collocated airborne measurements – a feasibility study
Abstract. Spectral optical layer properties of cirrus are derived from simultaneous and vertically collocated measurements of spectral upward and downward solar irradiance above and below the cloud layer and concurrent in situ microphysical sampling. From the irradiance data spectral transmissivity, absorptivity, reflectivity, and cloud top albedo of the observed cirrus layer are obtained. At the same time microphysical properties of the cirrus were sampled. The close collocation of the radiative and microphysical measurements, above, beneath and inside the cirrus, is obtained by using a research aircraft (Learjet 35A) in tandem with a towed platform called AIRTOSS (AIRcraft TOwed Sensor Sh…
Mechanisms of Banner Cloud Formation
Abstract Banner clouds are clouds in the lee of steep mountains or sharp ridges. Their formation has previously been hypothesized as due to three different mechanisms: (i) vertical uplift in a lee vortex (which has a horizontal axis), (ii) adiabatic expansion along quasi-horizontal trajectories (the so-called Bernoulli effect), and (iii) a mixing cloud (i.e., condensation through mixing of two unsaturated air masses). In the present work, these hypotheses are tested and quantitatively evaluated against each other by means of large-eddy simulation. The model setup is chosen such as to represent idealized but prototypical conditions for banner cloud formation. In this setup the lee-vortex mec…
A tandem approach for collocated in-situ measurements of microphysical and radiative cirrus properties
Abstract. Microphysical and radiation measurements were collected with the unique AIRcraft TOwed Sensor Shuttle (AIRTOSS) – Learjet tandem platform. It is a combination of a Learjet 35A research aircraft and an instrumented aerodynamic body, which can be detached from and retracted back to the aircraft during flight. Both platforms are equipped with radiative, cloud microphysical, trace gas (CO, N2O, O3 and H2O) and meteorological instruments to study the inhomogeneity of cirrus as well as other layer clouds. Sophisticated numerical flow simulations were conducted in advance in order to optimally integrate a Cloud Combination Probe (CCP) inside the AIRTOSS. The tandem platform was used for …
A tandem approach for collocated measurements of microphysical and radiative cirrus properties
Microphysical and radiation measurements were collected with the novel AIRcraft TOwed Sensor Shuttle (AIRTOSS) – Learjet tandem platform. The platform is a combination of an instrumented Learjet 35A research aircraft and an aerodynamic bird, which is detached from and retracted back to the aircraft during flight via a steel wire with a length of 4000 m. Both platforms are equipped with radiative, cloud microphysical, trace gas, and meteorological instruments. The purpose of the development of this tandem set-up is to study the inhomogeneity of cirrus as well as other stratiform clouds. Sophisticated numerical flow simulations were conducted in order to optimally integrate an axially asymmet…
Functionalization of Liposomes with Hydrophilic Polymers Results in Macrophage Uptake Independent of the Protein Corona
Liposomes are established drug carriers that are employed to transport and deliver hydrophilic drugs in the body. To minimize unspecific cellular uptake, nanocarriers are commonly modified with poly(ethylene glycol) (PEG), which is known to minimize unspecific protein adsorption. However, to date, it has not been studied whether this is an intrinsic and specific property of PEG or if it can be transferred to hyperbranched polyglycerol (hbPG) as well. Additionally, it remains unclear if the reduction of unspecific cell uptake is independent of the “basic” carrier at which a surface functionalization with polymers is usually applied. Therefore, we studied the protein corona of differently fun…