Aerosol properties of the Eyjafjallajökull ash derived from sun photometer and satellite observations over the Iberian Peninsula
The Eyjafjallajökull ash that crossed over Spain and Portugal on 6e12 May 2010 has been monitored by a set of operational sun photometer sites within AERONET-RIMA and satellite sensors. The sun photometer observations (aerosol optical depth, coarse mode concentrations) and ash products from IASI and SEVIRI satellite sensors, together with FLEXPART simulations of particle transport, allow identifying the volcanic aerosols. The aerosol columnar properties derived from inversions were investigated, indicating specific properties, especially regarding the absorption. The single scattering albedo was high (0.95 at 440 nm) and nearly wavelength independent, although with slight decrease with wave…
Depolarization�ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006
Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9°N, –6.9°E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34…
Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements
Abstract. This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: 95% of the measured data has to be within 0.005 ± 0.001∕m (where m is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865 nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412 nm,…