0000000001195399

AUTHOR

Philippe Goloub

Aerosol optical properties and instantaneous radiative forcing based on high temporospatial resolution CARSNET ground-based measurements over eastern China

Abstract. Variations in the optical properties of aerosols and their radiative forcing were investigated based on long-term synchronous observations made at three-minute intervals from 2011 to 2015 over seven adjacent CARSNET (China Aerosol Remote Sensing NETwork) urban (Hangzhou), suburban (Xiaoshan, Fuyang, LinAn, Tonglu, Jiande) and rural (ChunAn) stations in the Yangtze River Delta region, eastern China. The aerosol optical depth (AOD) varied from 0.68 to 0.76, with two peaks in June and September, and decreased from the eastern coast to western inland areas. The ratio of the AOD of fine-mode particles to the total AOD was > 0.90 and the extinction Angström exponent was > 1.20 thr…

research product

Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements

Abstract. This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: 95% of the measured data has to be within 0.005 ± 0.001∕m (where m is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865 nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412 nm,…

research product

Contrast in column-integrated aerosol optical properties during heating and non-heating seasons at Urumqi — Its causes and implications

Abstract Aerosol optical properties were retrieved from two years' worth of Sunphotometer measurements at Urumqi, an urban station in western China. Distinct seasonal variations of aerosol optical properties were revealed. During the heating season, mean aerosol optical depth at 550 nm (τ a ), Angstrom exponent calculated from aerosol optical depth at wavelength of 440 and 870 nm (α) as well as PM 2.5 concentration were 0.58 ± 0.33, 1.11 ± 0.34 and 79.5 ± 69.6 μg m − 3 , respectively, which contrasted their counterparts during the non-heating season of 0.32 ± 0.22, 0.79 ± 0.26, and 35.0 ± 20.1 μg m − 3 . Seasonal variations of τ a and PM 2.5 at Urumqi contrasted with corresponding values in…

research product