Neuroendocrine indicators of allostatic load reveal the impact of environmental acidification in fish
Abstract When mobilized from surrounding soils and binding to gills at moderately low pH, aluminum (Al) cations can adversely affect fish populations. Furthermore, acidification may lead to allostatic overload, a situation in which the costs of coping with chronic stress affects long-term survival and reproductive output and, ultimately, ecosystem health. The brain's serotonergic system plays a key role in neuroendocrine stress responses and allostatic processes. Here, we explored whether sublethal effects of Al in acidified water affects serotonergic neurochemistry and stress coping ability in a unique land-locked salmon population from Lake Bygelandsfjorden, in southern Norway. Fish were …