Unraveling metabolic flexibility of rhodococci in PCB transformation
International audience; Even though the genetic attributes suggest presence of multiple degradation pathways, most of rhodococci are known to transform PCBs only via regular biphenyl (bph) pathway. Using GC-MS analysis, we monitored products formed during transformation of 2,4,4′-trichlorobiphenyl (PCB-28), 2,2′,5,5′-tetrachlorobiphenyl (PCB-52) and 2,4,3′-trichlorobiphenyl (PCB-25) by previously characterized PCB-degrading rhodococci Z6, T6, R2, and Z57, with the aim to explore their metabolic pleiotropy in PCB transformations. A striking number of different transformation products (TPs) carrying a phenyl ring as a substituent, both those generated as a part of the bph pathway and an array…