0000000001196082

AUTHOR

B. Erazmus

showing 52 related works from this author

HΛ3 and H‾Λ¯3 production in Pb–Pb collisions at sNN=2.76 TeV

2019

Abstract The production of the hypertriton nuclei H Λ 3 and H ‾ Λ ¯ 3 has been measured for the first time in Pb–Pb collisions at s NN = 2.76  TeV with the ALICE experiment at LHC. The p T -integrated H Λ 3 yield in one unity of rapidity, d N / d y × B . R . ( H Λ 3 → He 3 , π − ) = ( 3.86 ± 0.77 ( stat. ) ± 0.68 ( syst. ) ) × 10 − 5 in the 0–10% most central collisions, is consistent with the predictions from a statistical thermal model using the same temperature as for the light hadrons. The coalescence parameter B 3 shows a dependence on the transverse momentum, similar to the B 2 of deuterons and the B 3 of 3He nuclei. The ratio of yields S 3 = H Λ 3 / ( He 3 × Λ / p ) was measured to b…

PhysicsNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physicsNuclear TheoryHadron7. Clean energy01 natural sciencesExponential functionBaryonNuclear physicsHigh energy nuclear physicsDeuterium0103 physical sciencesMass spectrumHigh Energy Physics::ExperimentRapidityImpact parameterNuclear Experiment010306 general physicsGlauberHypertritonPhysics Letters B
researchProduct

Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb–Pb collisions at sNN=2.76 TeV

2014

The inclusive J/.nuclear modification factor (R-AA) in Pb-Pb collisions at root(NN)-N-S = 2.76TeVhas been measured by ALICE as a function of centrality in the e+ e-decay channel at mid-rapidity (| y| < 0.8) and as a function of centrality, transverse momentum and rapidity in the + -decay channel at forward-rapidity (2.5 < y < 4). The J/.yields measured in Pb-Pb are suppressed compared to those in ppcollisions scaled by the number of binary collisions. The RAAintegrated over a centrality range corresponding to 90% of the inelastic Pb-Pb cross section is 0.72 - 0.06(stat.) - 0.10(syst.) at mid-rapidity and 0.58 - 0.01(stat.) - 0.09(syst.) at forward-rapidity. At low transverse momentum, signi…

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsTransverse momentumModification factorRapidityCentralityLower energyCharm quarkPhysics Letters B
researchProduct

Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

2017

The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region $|��|&lt;0.8$ as a function of centrality and transverse momentum $p_{\rm T}$ using two observables, to search for evidence of $p_{\rm T}$-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that $p_{\rm T}$-dependent fluctuations are only present for the second order flow vector. Similar results hav…

HEAVY-ION COLLISIONSnucl-extransverse momentum dependenceCOLLABORATIONangular correlation [charged particle]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEmodel: hydrodynamicstransport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear ExperimentMonte CarloHeavy Ion Experiments; RELATIVISTIC NUCLEAR COLLISIONS; HEAVY-ION COLLISIONS; QUARK-GLUON; PLASMA; COLLECTIVE FLOW; COLLABORATIONPLASMAfluctuation [geometry]flow: anisotropygeometry: fluctuationQUARK-GLUONCERN LHC CollHeavy Ion Experiments; Nuclear and High Energy PhysicsflowRELATIVISTIC NUCLEAR COLLISIONSHeavy Ion ExperimentQuark-Gluon PlasmaParticle Physics - Experiment2760 GeV/nucleon5020 GeV/nucleonNuclear and High Energy PhysicsCERN LabCOLLECTIVE FLOWFOS: Physical sciencestransverse momentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]vector [fluctuation]Heavy Ion Experimentsscattering [heavy ion][ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]factorizationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530hydrodynamics [model]Nuclear Physics - Experimentnumerical calculationsinitial stateleadHeavy Ion Experiments Nuclear and High Energy Physics.hep-exboundary conditionrapiditycorrelationviscositylcsh:QC770-798High Energy Physics::Experimentp nucleusentropy: densitycharged particle: angular correlationexperimental results
researchProduct

Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC

2017

Physical review letters 118(16), 162302 (2017). doi:10.1103/PhysRevLett.118.162302

heavy ion: scattering:Kjerne- og elementærpartikkelfysikk: 431 [VDP]transverse momentum [correlation function]correlation [momentum]550Pb-PbPb-Pb collisionsGeneral Physics and Astronomyhiukkasfysiikkanucl-exPP01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEDEPENDENCEddc:550Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVNuclear ExperimentPERSPECTIVENuclear ExperimentPhysics and Astronomy (all); ALICE; LHCPhysicscorrelation function: transverse momentumPhysicsflow ; transverse ; momentum ; Pb-Pbtransverse momentum: correlationtwo-particleHanbury-Brown-Twiss effect:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.transverseTransverse planeCorrelation function (statistical mechanics)CERN LHC Coll:Nuclear and elementary particle physics: 431 [VDP]flowPseudorapidityLHCParticle Physics - ExperimentdeconfinementParticle physicscollectiveVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciencesmomentumtriangulationPhysics and Astronomy(all)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesBethe ansatzMomentumNuclear physicsCENTRALITYPhysics and Astronomy (all)statistical analysisFactorizationscattering [heavy ion]Relativistic heavy-ion collisions0103 physical sciencesALICE / ALICE2760 GeV-cmsNuclear Physics - ExperimentRapiditystructurenumerical calculations010306 general physicsNuclear Physicstwo-particle transverse momentum differential correlation functionAnsatzleadDEPENDENCE PERSPECTIVE CENTRALITY PP.ta114VDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431hep-ex010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]momentum: correlationBethe ansatzROOT-S(NN)=2.76 TEV; DEPENDENCE; PERSPECTIVE; PPNATURAL SCIENCES. Physics.rapiditypile-uptransverse momentum: factorizationfactorization [transverse momentum]correlation [transverse momentum]experimental results
researchProduct

Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pp collisions at sNN=5.02 TeV

2020

Mid-rapidity production of $\pi^{\pm}$, $\rm{K}^{\pm}$ and ($\bar{\rm{p}}$)p measured by the ALICE experiment at the LHC, in Pb-Pb and inelastic pp collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV, is presented. The invariant yields are measured over a wide transverse momentum ($p_{\rm{T}}$) range from hundreds of MeV/$c$ up to 20 GeV/$c$. The results in Pb-Pb collisions are presented as a function of the collision centrality, in the range 0$-$90%. The comparison of the $p_{\rm{T}}$-integrated particle ratios, i.e. proton-to-pion (p/$\pi$) and kaon-to-pion (K/$\pi$) ratios, with similar measurements in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV show no significant energy dependence. B…

PhysicsParticle physics010308 nuclear & particles physics01 natural sciences7. Clean energySpectral linePionAntiproton0103 physical sciencesProduction (computer science)Impact parameterNuclear Experiment010306 general physicsMaximaEnergy (signal processing)Bar (unit)Physical Review C
researchProduct

Pseudorapidity dependence of the anisotropic flow of charged particles in Pb–Pb collisions at sNN=2.76 TeV

2016

We present measurements of the elliptic ($\mathrm{v}_2$), triangular ($\mathrm{v}_3$) and quadrangular ($\mathrm{v}_4$) anisotropic azimuthal flow over a wide range of pseudorapidities ($-3.5< \eta < 5$). The measurements are performed with Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV using the ALICE detector at the Large Hadron Collider (LHC). The flow harmonics are obtained using two- and four-particle correlations from nine different centrality intervals covering central to peripheral collisions. We find that the shape of $\mathrm{v}_n(\eta)$ is largely independent of centrality for the flow harmonics $n=2-4$, however the higher harmonics fall off more steeply with increasing $|…

PhysicsNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physicsElliptic flow01 natural sciencesCharged particleNuclear physicsPseudorapidityHarmonics0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsScalingPhysics Letters B
researchProduct

Charge separation relative to the reaction plane in Pb-Pb collisions atsNN=2.76  TeV

2013

Measurements of charge-dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at root s(NN) = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudorapidity range vertical bar eta vertical bar < 0.8 are presented as a function of the collision centrality, particle separation in pseudorapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge-dependent azimuthal co…

PhysicsParticle physicsRange (particle radiation)Large Hadron Collider010308 nuclear & particles physicsPlane (geometry)DetectorGeneral Physics and AstronomyCollision01 natural sciencesNuclear physicsAzimuthPseudorapidity0103 physical sciencesHigh Energy Physics::ExperimentImpact parameterNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Anisotropic Flow of Charged Particles in Pb-Pb Collisions atsNN=5.02  TeV

2016

We report the first results of elliptic (v2), triangular (v3), and quadrangular (v4) flow of charged particles in Pb-Pb collisions at a center-of-mass energy per nucleon pair of √sNN=5.02  TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region |η|<0.8 and for the transverse momentum range 0.2<pT<5  GeV/c. The anisotropic flow is measured using two-particle correlations with a pseudorapidity gap greater than one unit and with the multiparticle cumulant method. Compared to results from Pb-Pb collisions at √sNN=2.76  TeV, the anisotropic flow coefficients v2, v3, and v4 are found to increase by (3.0±0.6)%, (4.3±1.4)%, …

PhysicsRange (particle radiation)Large Hadron Collider010308 nuclear & particles physicsElliptic flowGeneral Physics and Astronomy01 natural sciences7. Clean energyCharged particleNuclear physicsPseudorapidity0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonAnisotropyPhysical Review Letters
researchProduct

Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at s=13 TeV

2016

The pseudorapidity (η) and transverse-momentum (pT) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy s√ = 13 TeV. The pseudorapidity distribution in |η|< 1.8 is reported for inelastic events and for events with at least one charged particle in | η|< 1. The pseudorapidity density of charged particles produced in the pseudorapidity region |η|< 0.5 is 5.31 ± 0.18 and 6.46 ± 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 < pT < 20 GeV/c and |η|< 0.8 for events with at least one charged particle in |η|< 1. The correlation between transverse momen…

PhysicsNuclear and High Energy PhysicsParticle physicsTime projection chamber010308 nuclear & particles physicsHadronPartonStrangeness01 natural sciences7. Clean energyCharged particleHadronizationNuclear physicsPseudorapidity0103 physical sciencesHigh Energy Physics::ExperimentMultiplicity (chemistry)Nuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Azimuthally Differential Pion Femtoscopy in Pb-Pb Collisions at sNN=2.76  TeV

2017

We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of √sNN = 2.76 TeV. The measurements have been performed in the centrality range 0%-50% and for pion pair transverse momenta 0.2 < kT < 0.7 GeV/c. We find that the Rside and Rout radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider. The final-state source eccentricity, estimated via Rside oscillations, is found to be significantly sma…

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsOscillationmedia_common.quotation_subjectNuclear TheoryHadronGeneral Physics and Astronomy01 natural sciencesNuclear physicsTransverse planePion0103 physical sciencesRapidityEccentricity (behavior)Nuclear Experiment010306 general physicsRelativistic Heavy Ion Collidermedia_commonPhysical Review Letters
researchProduct

Direct photon production in Pb–Pb collisions atsNN=2.76 TeV

2016

Direct photon production at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV was studied in the transverse momentum range 0.9<pT<14 GeV/c. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the ALICE detector material with the e+e− pair reconstructed in the central tracking system. The results of the two methods were combined and direct photon spectra were measured for the 0–20%, 20–40%, and 40–80% centrality classes. For all three classes, agreement was found with perturbative QCD calculations for pT≳5 GeV/c. Direct photon spectra down to pT≈1 GeV/c could be extracted for the 20–40% and 0–20% centrality classes. The significance of th…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsPhoton010308 nuclear & particles physicsHadronBremsstrahlungPerturbative QCD01 natural sciencesParticle identificationNuclear physics0103 physical sciencesRapidityNuclear Experiment010306 general physicsGlauberPhysics Letters B
researchProduct

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at sNN=2.76 TeV

2017

We present the charged-particle pseudorapidity density in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\,\mathrm{Te\kern-.25exV}$ in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from $-3.5$ to $5$, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find $21\,400\pm 1\,300$ while for the most peripheral (80-90%) we find $230\pm 38$. This corresponds to an increase of $(27\pm4)\%$ over the results at $\sqrt{s_{\mathrm{NN}}}=2.76\,\mathrm{Te\kern-.25exV}$ previously reported by ALICE. The energy dependence of the total number of charged particles…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsExtrapolation01 natural sciencesCharged particleColor-glass condensateNuclear physicsPseudorapidity0103 physical sciencesQuark–gluon plasmaRapidityImpact parameterCentralityNuclear Experiment010306 general physicsNucleonGlauberScalingPhysics Letters B
researchProduct

Multiharmonic Correlations of Different Flow Amplitudes in Pb-Pb Collisions at ...

2021

The event-by-event correlations between three flow amplitudes are measured for the first time in Pb-Pb collisions, using higher-order symmetric cumulants. We find that different three-harmonic correlations develop during the collective evolution of the medium when compared to correlations that exist in the initial state. These new results cannot be interpreted in terms of previous lower-order flow measurements since contributions from two-harmonic correlations are explicitly removed in the new observables. A comparison to Monte Carlo simulations provides new and independent constraints for the initial conditions and system properties of nuclear matter created in heavy-ion collisions. © 2021…

PhysicsLarge Hadron Collider010308 nuclear & particles physicsMonte Carlo methodGeneral Physics and AstronomyObservableNuclear matter01 natural sciencesNuclear physicsAmplitudeFlow (mathematics)0103 physical sciencesSystem propertyNuclear Experiment010306 general physicsCumulantPhysical Review Letters
researchProduct

Beauty production in pp collisions at s=2.76 TeV measured via semi-electronic decays

2014

The ALICE Collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1<pT<10 GeV/c, in pp collisions at s=2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD predictions agree with the measured cross section within the exper…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronPerturbative QCDElectron01 natural sciences7. Clean energyNuclear physicsPhase space0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityImpact parameterNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Multi-strange baryon production in p Pb collisions at sNN=5.02 TeV

2016

The multi-strange baryon yields in Pb--Pb collisions have been shown to exhibit an enhancement relative to pp reactions. In this work, $\Xi$ and $\Omega$ production rates have been measured with the ALICE experiment as a function of transverse momentum, ${p_{\rm T}}$, in p-Pb collisions at a centre-of-mass energy of ${\sqrt{s_{\rm NN}}}$ = 5.02 TeV. The results cover the kinematic ranges 0.6 GeV/$c<{p_{\rm T}} <$7.2 GeV/$c$ and 0.8 GeV/$c<{p_{\rm T}}<$ 5 GeV/$c$, for $\Xi$ and $\Omega$ respectively, in the common rapidity interval -0.5 $<{y_{\rm CMS}}<$ 0. Multi-strange baryons have been identified by reconstructing their weak decays into charged particles. The ${p_{\rm T}}$ spectra are ana…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsHadronHyperonStrangeness7. Clean energy01 natural sciencesCharged particleNuclear physicsBaryonPion0103 physical sciencesQuark–gluon plasmaRapidityNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Centrality Dependence of the Charged-Particle Multiplicity Density at Midrapidity in Pb-Pb Collisions atsNN=5.02  TeV

2016

The pseudorapidity density of charged particles, dNch/dη, at midrapidity in Pb-Pb collisions has been measured at a center-of-mass energy per nucleon pair of √sNN=5.02 TeV. For the 5% most central collisions, we measure a value of 1943 ± 54. The rise in dNch/dη as a function of √sNN p is steeper than that observed in proton-proton collisions and follows the trend established by measurements at lower energy. The increase of dNch/dη as a function of the average number of participant nucleons, ⟨Npart⟩, calculated in a Glauber model, is compared with the previous measurement at √sNN=2.76 TeV. A constant factor of about 1.2 describes the increase in dNch/dη from √sNN=2.76 to 5.02 TeV for all cen…

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsGeneral Physics and Astronomy01 natural sciencesCharged particleNuclear physicsPseudorapidity0103 physical sciencesQuark–gluon plasmaImpact parameterMultiplicity (chemistry)Nuclear Experiment010306 general physicsNucleonGlauberPhysical Review Letters
researchProduct

Azimuthal anisotropy of charged jet production in sNN=2.76 TeV Pb–Pb collisions

2016

We present measurements of the azimuthal dependence of charged jet production in central and semicentral √sNN = 2.76 TeV Pb–Pb collisions with respect to the second harmonic event plane, quantified as vch jet 2 . Jet finding is performed employing the anti-kT algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero vch jet 2 is observed in semi-central …

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsJet (fluid)Particle physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical Phenomena01 natural sciencesCharged particleNuclear physics0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsAnisotropyParton showerEvent (particle physics)Event generatorPhysics Letters B
researchProduct

Determination of the event collision time with the ALICE detector at the LHC

2017

The European physical journal / Plus 132(2), 99 (2017). doi:10.1140/epjp/i2017-11279-1

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmeasurement methodsGeneral Physics and Astronomycollision time01 natural sciencesParticle identificationALICEscattering [p p]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniquesscattering [nucleus nucleus]time resolutionNuclear ExperimentPhysicsLarge Hadron ColliderDetectorInstrumentation and Detectors (physics.ins-det)nucleus nucleus: scatteringPower (physics)PRIRODNE ZNANOSTI. Fizika.Time of flightLHCParticle physicsp p: scatteringPhysics and Astronomy (all) ALICE LHCeventFOS: Physical sciencesPhysics and Astronomy(all)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]time-of-flight530114 Physical sciencesNuclear physicsALICE detectorPhysics and Astronomy (all)0103 physical sciencesddc:530Nuclear Physics - Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]:Matematikk og Naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]010306 general physicsp nucleus: scattering010308 nuclear & particles physicsscattering [p nucleus]PERFORMANCECollisionNATURAL SCIENCES. Physics.efficiencyALICE ; event ; collision timeALICE (propellant)particle identificationEvent (particle physics)
researchProduct

Measurement of electrons from heavy-flavour hadron decays in p–Pb collisions at sNN=5.02TeV

2016

The production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum (pT) in minimum-bias p–Pb collisions at √sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement covers the pT interval 0.5 < pT < 12 GeV/c and the rapidity range −1.065 < ycms < 0.135 in the centre-of-mass reference frame. The contribution of electrons from background sources was subtracted using an invariant mass approach. The nuclear modification factor RpPb was calculated by comparing the pT-differential invariant cross section in p–Pb collisions to a pp reference at the same centre-of-mass energy, which was obtained by interpolating measurements at √s = 2.76 TeV an…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronQuarkoniumNuclear matter01 natural sciences7. Clean energyParticle identificationNuclear physics0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentInvariant massRapidityNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p–Pb collisions at sNN=5.02 TeV

2016

The production of charged pions, kaons and (anti)protons has been measured at mid-rapidity ($-0.5 10$ GeV/$c$), the particle ratios are consistent with those reported for pp and Pb-Pb collisions at the LHC energies. At intermediate $p_{\rm T}$ the (anti)proton $R_{\rm pPb}$ shows a Cronin-like enhancement, while pions and kaons show little or no nuclear modification. At high $p_{\rm T}$ the charged pion, kaon and (anti)proton $R_{\rm pPb}$ are consistent with unity within statistical and systematic uncertainties.

PhysicsNuclear and High Energy PhysicsParticle physicsProton010308 nuclear & particles physicsNuclear TheoryHadron7. Clean energy01 natural sciencesParticle identificationCharged particleNuclear physicsPionAntiproton0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Measurements of mixed harmonic cumulants in Pb–Pb collisions at sNN=5.02 TeV

2021

Correlations between moments of different flow coefficients are measured in Pb–Pb collisions at sNN=5.02 TeV recorded with the ALICE detector. These new measurements are based on multiparticle mixed harmonic cumulants calculated using charged particles in the pseudorapidity region |η|&lt;0.8 with the transverse momentum range 0.2&lt;pT&lt;5.0 GeV/c. The centrality dependence of correlations between two flow coefficients as well as the correlations between three flow coefficients, both in terms of their second moments, are shown. In addition, a collection of mixed harmonic cumulants involving higher moments of v2 and v3 is measured for the first time, where the characteristic signature of ne…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physics01 natural sciencesCharged particleNuclear physicsPseudorapidity0103 physical sciencesHarmonicRapidity010306 general physicsAnisotropyCumulantPhysics Letters B
researchProduct

Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb–Pb collisions at sNN=2.76 TeV

2016

State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Inst…

PhysicsNuclear and High Energy PhysicsLatin AmericansHigher educationEuropean community010308 nuclear & particles physicsbusiness.industryAtomic energyEuropean researchIndustrial researchLibrary science01 natural sciences7. Clean energyBildungNuclear physics0103 physical sciences010306 general physicsChinabusinessPhysics Letters B
researchProduct

Measurement of an Excess in the Yield ofJ/ψat Very LowpTin Pb–Pb Collisions atsNN=2.76  TeV

2016

We report on the first measurement of an excess in the yield of J/ψ at very low transverse momentum (pT< 0.3 GeV/c) in peripheral hadronic Pb-Pb collisions at √sNN = 2.76 TeV, performed by ALICE at the CERN LHC. Remarkably, the measured nuclear modification factor of J/ψ in the rapidity range 2.5< y< 4 reaches about 7 (2) in the pT range 0- 0.3 GeV/c in the 70-90% (50-70%) centrality class. The J/ψ production cross section associated with the observed excess is obtained under the hypothesis that coherent photoproduction of J/ψ is the underlying physics mechanism. If confirmed, the observation of J/ψ coherent photoproduction in Pb-Pb collisions at impact parameters smaller than twice the nuc…

Nuclear reactionPhysicsParticle physics010308 nuclear & particles physicsBranching fractionNuclear TheoryHadronGeneral Physics and AstronomyQuarkonium01 natural sciences7. Clean energyNuclear physics13. Climate action0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityImpact parameterNuclear Experiment010306 general physicsGlauberPhysical Review Letters
researchProduct

Measurements of inclusive jet spectra in pp and central Pb-Pb collisions at sNN=5.02TeV

2020

This article reports measurements of the pT- differential inclusive jet cross section in pp collisions at √s=5 .02TeV and the pT- differential inclusive jet yield in Pb-Pb 0–10% central collisions at√sNN =5.02TeV. Jets were reconstructed at midrapidity with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT algorithm. For ppcollisions, we report jet cross sections for jet resolution parameters R =0.1–0.6 over the range 20 < pT, jet < 140 GeV/c, as well as the jet cross-section ratios of different R and comparisons to two next-to-leading-order (NLO)– based theoretical predictions. For Pb-Pb collisions, we report the R=0.2 and R=0.4 jet spectra for 40 < pT, jet < 1…

PhysicsRange (particle radiation)Jet (fluid)Large Hadron Collider010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical Phenomena01 natural sciencesSpectral lineNuclear physicsElectromagnetic calorimeter0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentImpact parameterNuclear Experiment010306 general physicsJet quenchingPhysical Review C
researchProduct

Measurement of visible cross sections in proton-lead collisions at √sNN= 5.02 TeV in van der Meer scans with the ALICE detector

2014

In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass energy per nucleon pair $\sqrt{s_{\rm{NN}}}=5.02$ TeV. Van der Meer scans were performed for both configurations of colliding beams, and the cross section was measured for two reference processes, based on particle detection by the T0 and V0 detectors, with pseudo-rapidity coverage $4.6<\eta< 4.9$, $-3.3<\eta<-3.0$ and $2.8<\eta< 5.1$, $-3.7<\eta<-1.7$, respectively. Given the asymmetric detector acceptance, the cross section was measured separately for the two configurations. The measured visible cross sections are used to calculate the integrated luminosity of the proton-lead and lead-…

ProtonNuclear Theorylarge detector systems for particle and astroparticle physicsLarge detector systems for particle and astroparticle physics; Particle tracking detec- tors; Heavy-ion detectors01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Particle tracking detectorsparticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutron detectionNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentInstrumentationMathematical PhysicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)PhysicsDetectorLuminosity measurement3. Good healthPRIRODNE ZNANOSTI. Fizika.Large detector systems for particle and astroparticle physics Particle tracking detec- torNucleonParticle Physics - ExperimentLarge detector systems for particle and astroparticle physics ; Particle tracking detectors ; Heavy-ion detectorsParticle physicsParticle tracking detec- torsInstrumentationHeavy-ion detectorsFOS: Physical sciencesLarge detector systems for particle and astroparticle physics; Particle tracking detectors; Heavy-ion detectors[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear physicsCross section (physics)p-Pb collisions at the LHC0103 physical sciencesNuclear Physics - Experiment010306 general physics010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsALICE experimentLarge detector systems for particle and astroparticle physics Particle tracking detec- tors; Heavy-ion detectorsNATURAL SCIENCES. Physics.heavy-ion detectorsInstrumentation; Mathematical PhysicsPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct

Correlated Event-by-Event Fluctuations of Flow Harmonics in Pb-Pb Collisions at sNN=2.76  TeV

2016

We report the measurements of correlations between event-by-event fluctuations of amplitudes of anisotropic flow harmonics in nucleus-nucleus collisions, obtained for the first time using a new analysis method based on multiparticle cumulants in mixed harmonics. This novel method is robust against systematic biases originating from non-flow effects and by construction any dependence on symmetry planes is eliminated. We demonstrate that correlations of flow harmonics exhibit a better sensitivity to medium properties than the individual flow harmonics. The new measurements are performed in Pb-Pb collisions at the centre-of-mass energy per nucleon pair of $\sqrt{s_{_{\rm NN}}}=2.76$ TeV by the…

PhysicsLarge Hadron Collider010308 nuclear & particles physicsElliptic flowGeneral Physics and Astronomy01 natural sciencesHarmonic analysisNuclear physicsFlow (mathematics)Harmonics0103 physical sciencesQuark–gluon plasmaImpact parameterNuclear Experiment010306 general physicsEnergy (signal processing)Physical Review Letters
researchProduct

Particle identification in ALICE: a Bayesian approach

2016

We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss ($\mathrm{d}E/\mathrm{d}x$) and time-of-flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high-purity samples of identified particles in the decay channels ${\rm K}^0_S \righta…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Monte Carlo methodGeneral Physics and AstronomyPID controllerPP01 natural sciencesParticle identificationHigh Energy Physics - ExperimentParticle identificationHigh Energy Physics - Experiment (hep-ex)ALICEHadron-Hadron scattering (experiments)Heavy-ion collisionNuclear and High Energy Physics Hadron-Hadron scattering (experiments) Heavy Ion Experiments Heavy-ion collision Quark gluon plasma Particle identification Bayesianscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Detectors and Experimental TechniquesNuclear ExperimentNuclear ExperimentPhysicsefficiency [particle identification]PB COLLISIONSVDP::Kjerne- og elementærpartikkelfysikk: 431Monte Carlo [numerical calculations]PB COLLISIONS PP PERFORMANCE.:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.Time of flight:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431performancemomentum spectrum [charged particle]Nuclear and High Energy PhysicsParticle physicsMesoneducationBayesian probabilityFOS: Physical sciencesQuark gluon plasma[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesBayesianNuclear physicsPhysics and Astronomy (all)PionHeavy Ion Experiments0103 physical sciencesddc:530010306 general physics010308 nuclear & particles physicsBayesian approach:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]ALICE experimentPERFORMANCEparticle identification ; Bayesian approachNATURAL SCIENCES. Physics.PB COLLISIONS; TEV; PP; PERFORMANCEPhysics - Data Analysis Statistics and ProbabilityQuark–gluon plasmaBayesian [statistics]TEVHigh Energy Physics::Experimentparticle identificationData Analysis Statistics and Probability (physics.data-an)
researchProduct

Two-neutron correlations at small relative momenta in ^40Ar + ^197Au collisions at 60 MeV/nucleon

2000

Two-neutron correlation functions are measured in the 40Ar + 197Au reaction at 60 MeV/nucleon to study the space-time characteristics of neutron emitting sources. The source temperatures and velocities are deduced by fitting the single-neutron energy spectra with a three-source model. A comparison of the correlation data with the predictions of the model of moving sources and with the dynamical Landau-Vlasov model suggests the relevance of a multisource description. Particular care has been paid to the influence of the relative source abundance on the shape of the correlation function.

010302 applied physicsPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesSpectral lineNuclear physicsCorrelation function (statistical mechanics)0103 physical sciencesnuclear physics; heavy ions; neutron interferometryNeutronNucleonNuclear Experiment
researchProduct

J/ production as a function of charged-particle pseudorapidity density in p–Pb collisions at

2017

We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at sNN=5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyo…

PhysicsNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physicsMonte Carlo methodObservableMultiplicity (mathematics)01 natural sciencesCharged particleNuclear physicsPseudorapidity0103 physical sciencesTransverse momentumRapidityNuclear Experiment010306 general physicsPhysics Letters
researchProduct

Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC

2014

In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correl…

kinetic freezout heavy-ion experiments particle cummulantsMULTIPLICITY DEPENDENCEfreeze-out radius; three-pion cumulants; pp; p–Pb and Pb–Pb collisionsPb-Pb and p-Pb collisions at the LHCpp01 natural sciencesHigh Energy Physics - Experimentlaw.inventionColor-glass condensateHigh Energy Physics - Experiment (hep-ex)ALICElawheavy-ion experiments[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PbPbNuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]kinetic freezoutNuclear ExperimentNuclear ExperimentBosonPhysicsLarge Hadron ColliderPhysicsfreeze-out radiusHEAVY-ION GENERATORlcsh:QC1-999:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]Three-pion cumulant correlations3. Good healthPRIRODNE ZNANOSTI. Fizika.BOSE-EINSTEIN CORRELATIONSParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physics[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]QC1-999particle cummulantsVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciencesALICE; pp; pPb; PbPb; Bose-Einstein; correlation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Kinetic energyp-pNuclear physicsBOSE-EINSTEIN CORRELATIONS; RANGE ANGULAR-CORRELATIONS; HEAVY-ION GENERATOR; MULTIPLICITY DEPENDENCEPion0103 physical sciencesNuclear Physics - Experimentddc:530Multiplicity (chemistry)010306 general physicsta114p–Pb and Pb–Pb collisionsVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]ALICE experimentBose–Einstein correlationsBose-EinsteinNATURAL SCIENCES. Physics.correlationpPbthree-pion cumulantslcsh:PhysicsBose–Einstein condensateRANGE ANGULAR-CORRELATIONSPhysics Letters B
researchProduct

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

2018

We report the measured transverse momentum ($p_{\rm T}$) spectra of primary charged particles from pp, p-Pb and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV in the kinematic range of $0.15<p_{\rm T}<50$ GeV/$c$ and $|\eta|< 0.8$. A significant improvement of systematic uncertainties motivated the reanalysis of data in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, as well as in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, which is also presented. Spectra from Pb-Pb collisions are presented in nine centrality intervals and are compared to a reference spectrum from pp collisions scaled by the number of binary nucleon-nucleon collisions. For cent…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]heavy ion: scatteringHadronmomentum [up]binaryMULTIPLICITY DEPENDENCEPartonheavy ion: scattering ; transverse momentum: momentum spectrum ; quantum chromodynamics: matter ; parton: energy loss ; momentum: high ; up: momentum ; pp: scattering ; nucleus ; charged particle ; suppression ; energy dependence ; impact parameter ; transport theory ; nucleon nucleon ; CERN LHC Coll ; kinematics ; binarymomentum spectrum [transverse momentum]hiukkasfysiikkaKAONnucl-ex01 natural sciences7. Clean energy2760 GeV-cms/nucleonHigh Energy Physics - Experimenttransverse momentum: momentum spectrumHeavy Ion Experiments; Heavy-ion collision; Nuclear and high energy physicsHigh Energy Physics - Experiment (hep-ex)quark gluon plasma Heavy Ion Experiments Heavy-ion collisionnucleon nucleonHeavy-ion collisionhigh [momentum]PIONscattering [p p]transport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)impact parameterNuclear ExperimentNuclear ExperimentQCD matterparticle production and suppressionPhysicsPhysicsHADRONSheavy ion experiments heavy ion collision particle production and suppressionHeavy Ion Experiments; Heavy-ion collisionVDP::Kjerne- og elementærpartikkelfysikk: 431suppressionCENTRALITY DEPENDENCEcharged particleCharged particleMULTIPLICITY DEPENDENCE; CENTRALITY DEPENDENCE; HADRONS; SUPPRESSION; MODEL; KAON; PIONquark gluon plasma:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431kinematicsHeavy Ion ExperimentImpact parameterParticle Physics - ExperimentHeavy Ion Experiments Heavy-ion collision Nuclear and High Energy Physics.Nuclear and High Energy Physicsp p: scatteringnucleon nucleon: scatteringenergy loss [parton]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesenergy dependenceNuclear physicsPionHeavy Ion Experiments[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [heavy ion]0103 physical sciencesmatter [quantum chromodynamics]lcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Nuclear Physics - Experiment5020 GeV-cms/nucleonup: momentum010306 general physicsp nucleus: scatteringquantum chromodynamics: matterta114010308 nuclear & particles physicshep-exnucleus:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Nuclear and high energy physicsheavy ion collisionMODEL* Automatic Keywords *13. Climate actionmomentum: highQuark–gluon plasmalcsh:QC770-798High Energy Physics::Experimentparton: energy lossEnergy (signal processing)experimental results
researchProduct

Dielectron and heavy-quark production in inelastic and high-multiplicity proton–proton collisions at s=13TeV

2018

The measurement of dielectron production is presented as a function of invariant mass and transverse momentum (pT) at midrapidity (|ye|&lt;0.8) in proton–proton (pp) collisions at a centre-of-mass energy of s=13 TeV. The contributions from light-hadron decays are calculated from their measured cross sections in pp collisions at s=7 TeV or 13 TeV. The remaining continuum stems from correlated semileptonic decays of heavy-flavour hadrons. Fitting the data with templates from two different MC event generators, PYTHIA and POWHEG, the charm and beauty cross sections at midrapidity are extracted for the first time at this collision energy: dσcc¯/dy|y=0=974±138(stat.)±140(syst.)±214(BR)μb and dσbb…

Quantum chromodynamicsQuarkPhysicsNuclear and High Energy PhysicsPhotonProton010308 nuclear & particles physicsHadronMultiplicity (mathematics)01 natural sciencesNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentInvariant massCharm (quantum number)Nuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Charged jet cross section and fragmentation in proton-proton collisions at √s = 7 TeV

2019

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. We report the differential charged jet cross section and jet fragmentation distributions measured with the ALICE detector in proton-proton collisions at a center-of-mass energy √s=7  TeV. Jets with pseudorapidity |η|40  GeV/c, the pythia calculations also agree with the measured charged jet cross section. pythia6 simulations describe the fragmentation distributions to 15%. Larger discrepancies are observed for pythia8. SCOAP

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics and Astronomy (miscellaneous)fragmentation [jet]Astrophysics::High Energy Astrophysical Phenomenameasured [cross section]transverse momentumhiukkasfysiikka01 natural sciencesscattering [pp]Nuclear physicsALICEFragmentation (mass spectrometry)0103 physical sciencesjet fragmentation010306 general physicsNuclear ExperimentPhysicsQuantum chromodynamicsPP COLLISIONSta114010308 nuclear & particles physicsPB COLLISIONS:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRANSVERSE-MOMENTUMVDP::Kjerne- og elementærpartikkelfysikk: 431resolution16. Peace & justicecharged particlejet cross sectionCharged particleNATURAL SCIENCES. Physics.ddc::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]pp: scattering ; jet: fragmentation ; cross section: measured ; transverse momentum ; charged particle ; resolution ; PYTHIA ; ALICEVDP::Nuclear and elementary particle physics: 431PseudorapidityTransverse momentumPYTHIAHigh Energy Physics::Experimentproton-proton collisionsTRANSVERSE-MOMENTUM; PP COLLISIONS; PB COLLISIONS; PARTICLEPARTICLEPhysical Review D
researchProduct

The ALICE Transition Radiation Detector: Construction, operation, and performance

2018

The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both …

Physics - Instrumentation and Detectors:Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRPhysics::Instrumentation and DetectorsCOLLIDING BEAM EXPERIMENT; ELECTRON IDENTIFICATION; DRIFT CHAMBERS; TRD PROTOTYPES; ENERGY-LOSS; GEV/C; COLLISIONS; PIONSparticle identification [electron]Ionisation energy loTracking (particle physics)Transition radiation detector ; Multi-wire proportional drift chamber ; Fibre/foam sandwich radiator ; Xenon-based gas mixture ; Tracking ; Ionisation energy loss ; dE/dx ; TR ; Electron-pion identification ; Neural network ; Trigger01 natural sciencesParticle identificationdesign [detector]ALICEDetectors and Experimental Techniquesmomentum resolutionNuclear Experimentphysics.ins-detInstrumentationPhysicsPROTOTYPESLarge Hadron Collidertransition radiation detector; multi-wire proportional drift chamber;; fibre/foam sandwich radiator; Xenon-based gas mixture; tracking;; Ionisation energy loss; dE/dx; TR; electron-pion identification; Neural; network; trigger; COLLIDING BEAM EXPERIMENT; ELECTRON IDENTIFICATION; DRIFT CHAMBERS; TRD; PROTOTYPES; ENERGY-LOSS; GEV/C; COLLISIONS; PIONStrack data analysisTrackingPIONSDetectorVDP::Kjerne- og elementærpartikkelfysikk: 431Instrumentation and Detectors (physics.ins-det)trackingtransition radiation detector:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]ddc:PRIRODNE ZNANOSTI. Fizika.Xenon-based gas mixtureTransition radiation detector:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431GEV/Cmulti-wire proportional drift chamberperformanceParticle physicsNuclear and High Energy PhysicsCOLLISIONSelectron-pion identificationneural networkInstrumentationFOS: Physical sciencesTransition radiation detector; Multi-wire proportional drift chamber; Fibre/foam sandwich radiator; Xenon-based gas mixture; Tracking; Ionisation energy loss; dE/dx; TR; Electron-pion identification; Neural network; Trigger114 Physical sciencesMomentumNuclear physicsionisation energy loss0103 physical sciencesdE/dxDRIFT CHAMBERSdE/dx Electron-pion identification Fibre/foam sandwich radiator Ionisation energy loss Multi-wire proportional drift chamber Neural network TR Tracking Transition radiation detector Trigger Xenon-based gas mixture Nuclear and High Energy Physics Instrumentation.ddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]seuranta010306 general physicsdetector: designNuclear and High Energy PhysicNeuralCOLLIDING BEAM EXPERIMENTTRD PROTOTYPESelectron: particle identificationta114010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]fibre/foam sandwich radiatortriggercalibrationNATURAL SCIENCES. Physics.Neural networkdE/dx; Electron-pion identification; Fibre/foam sandwich radiator; Ionisation energy loss; Multi-wire proportional drift chamber; Neural network; TR; Tracking; Transition radiation detector; Trigger; Xenon-based gas mixtureTriggerdE/dx; Electron-pion identification; Fibre/foam sandwich radiator; Ionisation energy loss; Multi-wire proportional drift chamber; Neural network; TR; Tracking; Transition radiation detector; Trigger; Xenon-based gas mixture; Nuclear and High Energy Physics; InstrumentationnetworkELECTRON IDENTIFICATIONTRDHigh Energy Physics::ExperimentALICE (propellant)ENERGY-LOSSNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Inclusive quarkonium production at forward rapidity in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usep…

2016

We report on the inclusive production cross sections of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepac…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

First measurement of the |t|-dependence of coherent J/ψ photonuclear production

2021

The first measurement of the dependence on $|t|$, the square of the momentum transferred between the incoming and outgoing target nucleus, of coherent J/ψ photoproduction is presented. The data were measured with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV with the J/$\psi$ produced in the central rapidity region $|y| < 0.8$, which corresponds to the small Bjorken-$x$ range $(0.3 − 1.4) \times 10 ^{−3}$. The measured $|t|$-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according t…

heavy ion: scatteringnucleon: pairVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431nucl-ex01 natural sciencesSquare (algebra)ALICEJ/psi(3100): photoproduction[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentQuantum chromodynamicsPhysicsPhysicsForm factor (quantum field theory)ultra-peripheral collisionsdependence [impact parameter]J/psi ALICE Pb-Pb collisionsBalitsky-Kovchegov equationQuarkoniumddc:3. Good healthPHOTOPRODUCTIONshadowingNucleonParticle Physics - ExperimentPB-PB COLLISIONSNuclear and High Energy PhysicsQC1-999nucleus: form factor[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]MomentumNuclear physicsPHYSICSCross section (physics)heavy-ion collisions ultra-peripheral collisions quarkoniaphotoproduction [J/psi(3100)]scattering [heavy ion]0103 physical sciencesNuclear Physics - Experimentddc:530Rapidity5020 GeV-cms/nucleonHeavy Ion experiments010306 general physicsimpact parameter: dependencehep-ex010308 nuclear & particles physicsnucleus: targetpair [nucleon]photonuclear productionheavy-ion collisionsquarkoniaform factor [nucleus]PB-PB COLLISIONS; PHOTOPRODUCTION; PHYSICStarget [nucleus]J/PsicoherenceJ/psi(3100): photoproduction ; impact parameter: dependence ; nucleus: form factor ; nucleus: target ; nucleon: pair ; heavy ion: scattering ; coherence ; Balitsky-Kovchegov equation ; shadowing ; rapidity ; ALICE ; experimental results ; 5020 GeV-cms/nucleonrapidityphotonuclear production J/Psi Pb-Pb collisionsHigh Energy Physics::Experimentexperimental results
researchProduct

Real-time data processing in the ALICE High Level Trigger at the LHC

2019

At the Large Hadron Collider at CERN in Geneva, Switzerland, atomic nuclei are collided at ultra-relativistic energies. Many final-state particles are produced in each collision and their properties are measured by the ALICE detector. The detector signals induced by the produced particles are digitized leading to data rates that are in excess of 48 GB/$s$. The ALICE High Level Trigger (HLT) system pioneered the use of FPGA- and GPU-based algorithms to reconstruct charged-particle trajectories and reduce the data size in real time. The results of the reconstruction of the collision events, available online, are used for high level data quality and detector-performance monitoring and real-tim…

calibration ; ALICE ; trigger ; monitoring ; quality ; data management ; programming ; FPGA ; multiprocessor: graphics ; performancePhysics - Instrumentation and DetectorsHigh level triggerPhysics::Instrumentation and DetectorsLevel datatutkimuslaitteetFPGA; GPUDetector calibrationGPUFOS: Physical sciencesGeneral Physics and AstronomyhiukkasfysiikkaPhysics and Astronomy(all)01 natural sciencesprogramming010305 fluids & plasmasCombinatoricsALICE0103 physical sciencesmultiprocessor: graphics[INFO]Computer Science [cs][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsNuclear Experimentphysics.ins-detFPGAcomputer.programming_languagePhysicsLarge Hadron ColliderFPGA; GPU; TRACKsignaalinkäsittelyInstrumentation and Detectors (physics.ins-det)triggercalibrationmonitoringdatailmaisimetqualityHardware and ArchitectureTRACKHigh Energy Physics::Experimentdata managementAlice (programming language)computerperformance
researchProduct

Search for a common baryon source in high-multiplicity pp collisions at the LHC

2020

Physics letters / B B811, 135849 (2020). doi:10.1016/j.physletb.2020.135849

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]HadronHadron - hadron reactionHEAVY-ION COLLISIONSHigh multiplicityhiukkasfysiikkanucl-exdecay [resonance]01 natural sciencesHigh Energy Physics - ExperimentExperimentHigh Energy Physics - Experiment (hep-ex)hadron–hadron interactions LHC ALICEBarions; strong interaction; LHCALICEstrong resonance decayIonic Collisionsscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentBarionsPION INTERFEROMETRYhadron-hadron scatteringPhysicsLarge Hadron ColliderMesonsHadron - hadron reactionsmass: transversestrong interactionPhysicsbaryon correlations ; invariant radius ; strong hadron–hadron interactions ; strong resonance decayVDP::Kjerne- og elementærpartikkelfysikk: 431RadiusAU+AUInvariant (physics)lcsh:QC1-999quark gluon plasmaPRIRODNE ZNANOSTI. Fizika.HEAVY-ION COLLISIONS; PION INTERFEROMETRY; SIGMA(0) PRODUCTION; AU+AU; COLLISIONS; FEMTOSCOPY; SYSTEMS; PB:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431Transverse massLHCPBParticle Physics - Experimentbaryon correlationsCOLLISIONSNuclear and High Energy Physicsp p: scatteringHigh Energy Physics; ExperimentcollectiveFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530114 Physical sciencesNuclear physicsHadron - hadron reactions; LHCbaryon baryon: correlationSYSTEMSresonance: decay0103 physical sciencesfemtoscopyddc:530Nuclear Physics - ExperimentHigh Energy Physics010306 general physicshadron hadron: interactioninteraction [hadron hadron]010308 nuclear & particles physicshep-exhadron-hadron scattering ALICE experiment femtoscopySIGMA(0) PRODUCTIONHigh Energy Physics::PhenomenologyALICE experimentcorrelation [baryon baryon]Kaonsstrong hadron–hadron interactionsNATURAL SCIENCES. Physics.invariant radiusBaryonKaons; Ionic Collisions; Mesonstransverse [mass]Antiproton13000 GeV-cms/nucleonHigh Energy Physics::Experimentlcsh:Physicsexperimental results
researchProduct

Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s}=7$ TeV

2015

The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at centre-of-mass energy $\sqrt{s}=7$ TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the mid-rapidity region using the sequential recombination $k_{\rm T}$ and anti-$k_{\rm T}$ as well as the SISCone jet finding algorithms with several resolution parameters in the range $R=0.2$ to $0.6$. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum ($p_{\rm T}$) interval $20<p_{\rm T}^{\rm jet,ch}<100$ GeV/$c$. They are also consistent w…

shapes:Kjerne- og elementærpartikkelfysikk: 431 [VDP]parton distributionsMonte Carlo methodP(P)OVER-BAR COLLISIONSALICE Charged jet proton-proton 7 TeVATLAS DETECTOR01 natural sciencesSpectral lineHigh Energy Physics - Experimentdifferential charged jet cross sectionENERGYHigh Energy Physics - Experiment (hep-ex)ALICEFragmentation (mass spectrometry)Nuclear and High Energy Physics differential charged jet cross sectionfragmentation[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVNuclear ExperimentNuclear Experimentroot-s(nn)=2.76 tevatlas detectorPhysicsLarge Hadron Collidercross sectionPhysicsDetectorCharged particle3. Good health:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]charged jetsPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]SHAPESTransverse momentumHADRON-COLLISIONSFRAGMENTATIONpp collisionsenergyParticle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaCharged jetVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencestransverse-momentumNuclear physicsMinimum bias(P)OVER-BAR-P COLLISIONS P(P)OVER-BAR COLLISIONS PP COLLISIONS PARTON DISTRIBUTIONS TRANSVERSE-MOMENTUM SHAPES ALGORITHM ENERGY0103 physical sciences7 TeVNuclear Physics - Experimentproton-protonALGORITHM010306 general physics(p)over-bar-p collisionsPP COLLISIONSta114(P)OVER-BAR-P COLLISIONSVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRANSVERSE-MOMENTUMNATURAL SCIENCES. Physics.(p)over-bar-p collisions ; parton distributions ; transverse-momentum ; root-s(nn)=2.76 tev ; hadron-collisions ; atlas detector ; pp collisions ; fragmentation ; shapes ; energy ; charged jet ; cross section ; proton-proton ; 7 TeVhadron-collisionsPARTON DISTRIBUTIONSALICE; Charged jet; proton-proton; 7 TeVproton-proton collisionsHigh Energy Physics::Experimentcharged jet
researchProduct

Dielectron production in proton-proton and proton-lead collisions at √sNN=5.02TeV

2020

The first measurements of dielectron production at midrapidity (|ηe| &lt; 0.8) in proton–proton and proton–lead collisions at √sNN = 5.02 TeV at the LHC are presented. The dielectron cross section is measured with the ALICE detector as a function of the invariant mass mee and the pair transverse momentum pT, ee in the ranges mee &lt; 3.5 GeV/c2 and pT, ee &lt; 8 GeV/c, in both collision systems. In proton–proton collisions, the charm and beauty cross sections are determined at midrapidity from a fit to the data with two different event generators. This complements the existing dielectron measurements performed at √s = 7 and 13 TeV. The slope of the √s dependence of the three measurements is…

Nuclear and High Energy Physics:Kjerne- og elementærpartikkelfysikk: 431 [VDP]ProtonHadronNuclear Theorydielectrondielectron production01 natural sciences7. Clean energyNuclear physicshadron-ion interactionshadron-hadron collisions; dielectron production;Ionic Collisionsdielectron cross sectiondielectron nuclear modification factor0103 physical sciencesInvariant massDielectronCharm (quantum number)Dielectron; hadron-hadron interactions; hadron-ion interactionsPhysics::Atomic PhysicsIonic Collisions; Relativistic Heavy-ion Collisions; Quark-Gluon Plasma010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron Collider010308 nuclear & particles physicsPhysicsVDP::Kjerne- og elementærpartikkelfysikk: 431hadron-hadron interactionNuclear matterhadron-hadron collisionsNATURAL SCIENCES. Physics.ALICE LHC proton-lead collisions proton-proton collisionsPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431dielectron ; LHC ; dielectron cross section ; dielectron nuclear modification factorQuark–gluon plasmaQuark-Gluon PlasmaHigh Energy Physics::ExperimentLHChadron-hadron interactionsRelativistic Heavy-ion Collisions
researchProduct

Measurement of pion, kaon and proton production in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym…

2015

The measurement of primary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\pm }$$\end{document}π±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\pm }$$\end{document}K±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrs…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Production of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}…

2016

The production of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}∗(892)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{0}$$\end{document}0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Kaon femtoscopy in Pb-Pb collisions at √sNN=2.76 TeV

2017

We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at √ s NN = 2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured three-dimensional kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Pb-PbHadronNuclear TheoryPb-Pb collisionshiukkasfysiikkaHEAVY-ION COLLISIONSPPCOLLABORATION7. Clean energy01 natural sciencesParticle identificationHYDRODYNAMICSALICEDEPENDENCENuclear ExperimentPhysicsCOULOMB CORRECTIONSTime projection chamberLarge Hadron ColliderVDP::Kjerne- og elementærpartikkelfysikk: 431PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431BOSE-EINSTEIN CORRELATIONSTransverse massLHCkaonParticle physicsNuclear and High Energy PhysicskaonsNuclear physicsINTERFEROMETRYPionfemtoscopy0103 physical sciencesNuclear and High Energy Physics; ALICE; LHCPARTICLESparticle physics010306 general physicsScalingNuclear and High Energy Physicta114010308 nuclear & particles physics2.76TeVHEAVY-ION COLLISIONS; BOSE-EINSTEIN CORRELATIONS; COULOMB CORRECTIONS; INTERFEROMETRY; MATTER; PP; COLLABORATION; HYDRODYNAMICS; DEPENDENCE; PARTICLESBose–Einstein correlationsNATURAL SCIENCES. Physics.High Energy Physics::ExperimentMATTERkaon femtoscopy Pb-Pb 2.76TeV
researchProduct

Precision measurement of the mass difference between light nuclei and anti-nuclei

2015

The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons and anti-deuterons, and $^{3}{\rm He}$ and $^3\overline{\rm He}…

electronQuarkspectroscopyAntiparticleParticle physicsPhysics of Elementary Particles and FieldsCPT symmetryStrong interactionNuclear TheoryantunucleiFOS: Physical sciencesAntiprotonGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ElectronHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - ExperimentNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentAntihydrogenSpectroscopyNuclear Physicsantihydrogenmass measurementQuantum chromodynamicsPhysicsanti-nucleita114SPECTROSCOPY; ANTIHYDROGEN; ANTIPROTON; ELECTRONmass difference nuclei antunucleiHigh Energy Physics::Phenomenologymass differenceNATURAL SCIENCES. Physics.3. Good healthGluonPRIRODNE ZNANOSTI. Fizika.antiprotonnucleiQuark–gluon plasmamassmass difference ; nuclei ; anti-nuclei ; ALICE ; CERNHigh Energy Physics::ExperimentNucleon
researchProduct

Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

2016

ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons a…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics::Instrumentation and Detectorshigh muon multiplicity01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICECERN[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear Experimentcosmic rayPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Large Hadron ColliderDetectorVDP::Kjerne- og elementærpartikkelfysikk: 431ENERGY-SPECTRUMPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGcosmic rays detectorsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics and Astronomy[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FOS: Physical sciencescosmic ray experimentCosmic ray[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]EXTENSIVE AIR-SHOWERScosmic ray ; high muon multiplicity ; ALICE ; CERNBUNDLES114 Physical sciencesREGIONNuclear physicsALICE detectorcosmic rays0103 physical sciencesMultiplicity (chemistry)cosmic rays detector010306 general physicsatmospheric muonsMuon010308 nuclear & particles physicscosmic ray experiments; cosmic rays detectors;EXTENSIVE AIR-SHOWERS; ENERGY-SPECTRUM; BUNDLES; REGION; LEPAstronomy and AstrophysicsLEP115 Astronomy Space scienceNATURAL SCIENCES. Physics.13. Climate actioncosmic ray experiments; cosmic rays detectors; Astronomy and AstrophysicsHigh Energy Physics::Experimentcosmic ray experiments
researchProduct

Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at sNN=5.44TeV

2019

In this Letter, the ALICE Collaboration presents the first measurements of the charged-particle multiplicity density, dNch/dη, and total charged-particle multiplicity, Nchtot, in Xe–Xe collisions at a centre-of-mass energy per nucleon–nucleon pair of sNN=5.44TeV. The measurements are performed as a function of collision centrality over a wide pseudorapidity range of −3.5&lt;η&lt;5. The values of dNch/dη at mid-rapidity and Nchtot for central collisions, normalised to the number of nucleons participating in the collision (Npart) as a function of sNN follow the trends established in previous heavy-ion measurements. The same quantities are also found to increase as a function of Npart, and up …

Quantum chromodynamicsPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsMultiplicity (mathematics)01 natural sciencesCharged particleNuclear physicsPseudorapidity0103 physical sciencesQuark–gluon plasmaRapidityImpact parameterNuclear Experiment010306 general physicsNucleonPhysics Letters B
researchProduct

Measurement of dielectron production in central Pb-Pb collisions at √sNN = 2.76 TeV

2019

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. The first measurement of dielectron (e + e −) production in central (0 – 10 %) Pb – Pb collisions at √sNN=2.76TeV at the LHC is presented. The dielectron invariant-mass spectrum is compared to the expected contributions from hadron decays in the invariant-mass range 0 < mee < 3.5 GeV / c2. The ratio of data and the cocktail of hadronic contributions without vacuum ρ0 is measured in the invariant-mass range 0.15 < mee < 0.7 GeV / c2, w…

virtual [photon]:Kjerne- og elementærpartikkelfysikk: 431 [VDP]heavy ion collisionsHadrondielectron productionhiukkasfysiikkaPP01 natural sciencesS-W INTERACTIONSthermalALICEPhysics::Atomic PhysicsNuclear ExperimentBrookhaven RHIC CollPhysicsAU COLLISIONSLarge Hadron Colliderphoton: virtual ; photon: direct production ; heavy ion: scattering ; hadron: decay ; Brookhaven RHIC Coll ; transverse momentum ; CERN LHC Coll ; thermal ; ALICE ; mesonVDP::Kjerne- og elementærpartikkelfysikk: 431DIRECT PHOTON PRODUCTIONddc::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431Transverse momentumNuclear and High Energy PhysicsRho mesondirect production [photon]MesonPAIR PRODUCTIONPhoton lepton & quark productiontransverse momentumFew-body systemsmesonNuclear physicsDIRECT PHOTON PRODUCTION; S-W INTERACTIONS; AU COLLISIONS; RHO-MESON; DIMUON PRODUCTION; PAIR PRODUCTION; PP; J/PSI; ENHANCEMENT; EMISSIONENHANCEMENTscattering [heavy ion]0103 physical sciencesRelativistic heavy-ion collisionsRHO-MESON010306 general physicsParticle & resonance productionNuclear Physicsta114010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]NATURAL SCIENCES. Physics.J/PSIPair productionDIMUON PRODUCTIONQuark–gluon plasmaHigh Energy Physics::ExperimentEMISSIONdecay [hadron]
researchProduct

Elliptic Flow in Pb-Pb Collisions at

2017

We report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions at sNN=5.02  TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y|<0.9) in the dielectron decay channel and at forward rapidity (2.5<y<4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v2 is observed in the transverse momentum range 2<pT<8  GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at sNN=2.76  TeV in semicentral collisions. At midrapidity, the J/ψ  v2 is investigated as …

QuarkPhysicsMeson010308 nuclear & particles physicsElliptic flowGeneral Physics and AstronomyQuarkonium01 natural sciencesCharm quarkNuclear physicsMomentum0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physics
researchProduct

Measurement of quarkonium production at forward rapidity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfo…

2014

The inclusive production cross sections at forward rapidity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} …

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Centrality dependence of charged jet production in p–Pb collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepac…

2016

Measurements of charged jet production as a function of centrality are presented for  p–Pb  collisions recorded at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s_\mathrm {NN}}= 5.02$$\end{document}sNN=5.02 TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon–nucleon collisions is determined based on…

Regular Article - Theoretical PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Measurement of Z 0 -boson production at large rapidities in Pb–Pb collisions at

2018

The production of Z0 bosons at large rapidities in Pb–Pb collisions at √sNN=5.02TeV is reported. Z0 candidates are reconstructed in the dimuon decay channel (Z0→μ+μ−), based on muons selected with pseudo-rapidity −4.0 20GeV/c. The invariant yield and the nuclear modification factor, RAA, are presented as a function of rapidity and collision centrality. The value of RAA for the 0–20% central Pb–Pb collisions is 0.67±0.11(stat.)±0.03(syst.)±0.06(corr. syst.), exhibiting a deviation of 2.6σ from unity. The results are well-described by calculations that include nuclear modifications of the parton distribution functions, while the predictions using vacuum PDFs deviate from data by 2.3σ in the 0…

Nuclear reactionPhysicsNuclear and High Energy PhysicsLarge Hadron ColliderMuon010308 nuclear & particles physicsParton01 natural scienceslaw.inventionNuclear physicslaw0103 physical sciencesRapidityImpact parameter010306 general physicsColliderBoson
researchProduct

Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE

2013

Differential cross sections of charged particles in inelastic pp collisions as a function of $p_{\rm T}$ have been measured at $\sqrt{s}=$ 0.9, 2.76 and 7 TeV at the LHC. The $p_{\rm T}$ spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual $\sqrt{s}$ cannot be described by NLO-pQCD, the relative increase of cross section with $\sqrt{s}$ is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at $\sqrt{s} =$ 2.76 and 5.02 TeV up to $p_{\rm T}$ = 50 GeV/$c$ as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus coll…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics and Astronomy (miscellaneous)heavy ion collisionsNuclear Theory01 natural sciences7. Clean energySpectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)pp collisionALICEpp collisions; transverse momentum; ALICE[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)transverse momentum distributionNuclear ExperimentNuclear ExperimentPhysicsLarge Hadron Collidertransverse momentum; pp; ALICE; charged particlesPhysicsCharged particle3. Good health:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]Transverse momentumLhcDiffractionpp collisionsParticle Physics - ExperimentRegular Article - Experimental PhysicsVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431particle productionFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]transverse momentumtransverse momentum distribution; PP COLLISIONSNuclear physicsRoot-S(Nn)=2.76 TevCross section (physics)0103 physical sciencesNuclear Physics - ExperimentPb-Pb Collisions010306 general physicsEngineering (miscellaneous)SuppressionALICE experiment; particle production; heavy ion collisionsVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTransverse momentum distributions:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]ALICE experimentFunction (mathematics)Proton-Proton Collisionsp-p collisionHigh Energy Physics::ExperimentALICE (propellant)Energy (signal processing)
researchProduct