0000000001198395

AUTHOR

Lakshmikanth Guntupalli

ACT-MAC: An asynchronous cooperative transmission MAC protocol for WSNs

Duty cycling (DC) has been proven to be an efficient mechanism to reduce energy consumption in wireless sensor networks (WSNs). On the other hand, cooperative transmission (CT) enables longer range transmission to hop over an energy-hole node, resulting in more balanced energy consumption among nodes. In the literature, there exist few CT MAC protocols for DC operated WSNs and these protocols rely on fixed cycle length. In this paper, we propose a novel variable cycle length protocol, namely asynchronous cooperative transmission medium access control (ACT-MAC), which contains both features of reducing the unnecessary idle listening by DC and mitigating the energy-hole by making use of CT. T…

research product

Performance of frame transmissions and event-triggered sleeping in duty-cycled WSNs with error-prone wireless links

Abstract Two types of packet transmission schemes are prevalent in duty-cycled wireless sensor networks, i.e., single packet transmission and aggregated packet transmission which integrates multiple packets in one frame. While most existing models are developed based on an error-free channel assumption, this paper evaluates the performance of both transmission schemes under error-prone channel conditions. We develop a four-dimensional discrete-time Markov chain model to investigate the impact of channel impairments on the performance of frame transmissions. Together with tracking the number of packets in the queue, number of retransmissions and number of active nodes, the fourth dimension o…

research product

An On-Demand Energy Requesting Scheme for Wireless Energy Harvesting Powered IoT Networks

Energy harvesting (EH) delivers a unique technique for replenishing batteries in Internet of Things (IoT) devices. Equipped with an energy harvesting accessory, EH-enabled sensor nodes/IoT devices ...

research product

Energy Harvesting Powered Packet Transmissions in Duty-Cycled WSNs: A DTMC Analysis

Energy harvesting (EH) promises an extended lifetime for wireless sensor networks (WSNs), supplying sensor nodes with accumulated energy from natural sources. Different from battery powered sensors, nodes in EH-enabled WSNs are equipped with an energy harvesting accessory in order to extract energy from surrounding sources. Based upon the harvested energy, sensor nodes perform data exchange activities. In this paper, we develop two discrete time Markov chain (DTMC) models to analyze the performance of packet transmissions in such a WSN while employing a generic synchronous medium access control (MAC) protocol. Using the proposed DTMC models, we investigate the effect of EH over a specific s…

research product

EECDC-MAC: An energy efficient cooperative duty cycle MAC protocol

In this paper, we propose a novel energy efficient cooperative duty cycle MAC (EECDC-MAC) protocol in which sensor nodes use fixed wakeup rendezvous scheduling to exchange messages and a cooperative transmission mechanism to avoid overuse of nodes with lower residual energy. Numerical results demonstrate that the EECDC-MAC protocol can prolong the entire network longevity efficiently in comparison with an existing cooperative duty cycle MAC protocol, CDC-MAC, and another popular duty cycle MAC protocol, prediction wakeup MAC (PW-MAC) protocol.

research product

Energy Efficient Consecutive Packet Transmissions in Receiver-Initiated Wake-Up Radio Enabled WSNs

In wake-up radio (WuR)-enabled wireless sensor networks, data communication among nodes is triggered in an on-demand manner, by either a sender or a receiver. For receiver-initiated WuR (RI-WuR), a receiving node wakes up sending nodes through a wake-up call. Correspondingly sending nodes transmit packets in a traditional way by competing with one another multiple times in a single operational cycle. In this paper, we propose a receiver-initiated consecutive packet transmission WuR (RI-CPT-WuR) medium access control (MAC) protocol, which eliminates multiple competitions to achieve higher energy efficiency. Furthermore, we develop two associated discrete time Markov chains (DTMCs) for evalua…

research product

Event-Triggered Sleeping for Synchronous DC MAC IN WSNs: Mechanism and DTMC Modeling

Overhearing and idle listening are two primary sources for unnecessary energy consumption in wireless sensor networks. Although introducing duty cycling in medium access control (MAC) reduces idle listening, it cannot avoid overhearing in a network with multiple contending nodes. In this paper, we propose an event-triggered sleeping (ETS) mechanism for synchronous duty-cycled (DC) MAC protocols in order to avoid overhearing when a node is not active. This ETS mechanism applies to any synchronous DC MAC protocols and makes them more energy efficient. Furthermore, we develop a two dimensional discrete time Markov chain model to evaluate the performance of the proposed ETS mechanism by integra…

research product

Aggregated Packet Transmission in Duty-Cycled WSNs: Modeling and Performance Evaluation

[EN] Duty cycling (DC) is a popular technique for energy conservation in wireless sensor networks (WSNs) that allows nodes to wake up and sleep periodically. Typically, a single-packet transmission (SPT) occurs per cycle, leading to possibly long delay. With aggregated packet transmission (APT), nodes transmit a batch of packets in a single cycle. The potential benefits brought by an APT scheme include shorter delay, higher throughput, and higher energy efficiency. In the literature, different analytical models have been proposed to evaluate the performance of SPT schemes. However, no analytical models for the APT mode on synchronous DC medium access control (MAC) mechanisms exist. In this …

research product

DTMC modeling for performance evaluation of DW-MAC in wireless sensor networks

Synchronized duty cycling (DC) aligns sensor nodes to wake up at the same time in order to reduce idle listening for medium access control (MAC) in wireless sensor networks (WSNs). Demand wakeup MAC (DW-MAC) is a popular synchronous DC MAC protocol which allows nodes to compete and transmit multiple packets in one operational cycle. This multiple packet transmission (MPT) feature makes DW-MAC more energy efficient when comparing with other existing single time competition based protocols such as sensor MAC (S-MAC). In the literature, no analytical model exists to evaluate the performance of DW-MAC. In this paper, we develop two associated discrete time Markov chain (DTMC) models and incorpo…

research product

Cooperative or non-cooperative transmission in synchronous DC WSNs: A DTMC-based approach

Cooperative transmission (CT) enables balanced energy consumption among sensor nodes and mitigates the energy hole problem in wireless sensor networks (WSNs). In typical CT enabled medium access control (MAC) protocols, a source node decides to trigger CT or not based on a residual energy comparison between itself and its relay node. In this paper, we propose a receiver initiated CT MAC protocol, in which the receiving node makes the decision on initiating CT or not based on a tradeoff between performing CT and non-CT. In this way, nodes can avoid idle listening and achieve an extended lifetime. A discrete-time Markov chain (DTMC) model is developed to analyze the performance of CT associat…

research product

Performance Analysis of Synchronous Duty-Cycled MAC Protocols

In this letter, we propose an analytical model to evaluate the performance of the S-MAC protocol. The proposed model improves the accuracy of previous models in two aspects. First, it incorporates the dependence among the nodes within a cluster by defining a DTMC that models the number of active nodes, whereas the previous models considered that nodes were mutually independent. Second, it proposes new methods for calculating packet delay and energy consumption. The analytical model is validated through discrete-event based simulations. Numerical results demonstrate that the proposed analytical model and methods yield accurate results under realistic assumptions

research product

Energy Efficiency inWireless Sensor Networks: Transmission Protocols and Performance Evaluation

Doktorgradsavhandling, Fakultet for teknologi og realfag, Universitetet i Agder, 2016 Energy efficiency is one of the major goals for achieving green wireless communications. The recent growth in ubiquitous wireless connections and multimedia applications demands higher energy efficiency for wireless communications. As a part of this picture, wireless sensor networks (WSNs) need to be more energy efficient since the battery capacity of nodes in such networks is limited in the absence of energy harvesting sources. In general, an energy efficient protocol should perform as few as possible operations when delivering user information successfully across the network. Energy efficient data transm…

research product