0000000001199012
AUTHOR
G. Acciari
Experimental investigation on different rainfall energy harvesting structures
In this paper proposes an experimental comparison between different rainfall harvesting devices and the study of the corresponding electrical rectifying circuit. More in detail, three harvesting structures are considered: the cantilever, the bridge and the floating circle. For each of the proposed structure, different waveforms have been acquired and discussed. The processed data have been compared in order to suggest the best choice for the rectifying circuit, from the simplest one to the most endorsed in the technical literature.
Experimental Investigation on the Performances of Innovative PV Vertical Structures
The sustainable development of our planet is considerably related to a relevant reduction of CO2 global emissions, with building consumption contributing more than 40%. In this scenario, new technological conceptions, such as building-integrated photovoltaic technology, emerged in order to satisfy the requirements of sustainability imposed by the European Union. Therefore, the aim of this work is to provide a technical and economical comparison of the performances of different vertical-mounted innovative photovoltaic systems, potentially integrated on a building instead of on traditional windows or glass walls. The proposed investigation was carried out by means of experimental tests on thr…
Measuring rain energy with the employment of “Arduino”
This paper presents the performances of rainfall energy harvesting through the use of a piezoelectric transducer and an Arduino-based measuring system. Diverse studies agree on the possibility of generating electricity from rainfall, but to date, a study that can measure the quantity of energy produced during rainfall is still missing. The present study begins with results obtained from laboratory researchers using piezoelectric transducers and oscilloscopes — to measure the energy produced from a single raindrop — and concludes with an ad hoc Arduino-based measuring system, aimed at measuring the actual amount of electrical energy produced by a piezoelectric transducer that is exposed to r…
On the harvest of rainfall energy by means of piezoelectric transducer
In this paper a detailed study on the harvest of the energy contained in rainfall by means of piezoelectric transducers is presented. Diverse studies agree on the level of suitable generated voltage on the electrodes of a piezoelectric transducer subjected to rainfall, but a complete characterization on the supplied power is still missing. This work, in order to limit optimistic forecasts, takes into account the behavior of the transducers subjected to real and also artificial rainfall, condition that has shown promising behavior in laboratory. In order to increase the energy harvesting and also define its limits different loads have been taken into account. Only commercial transducers have…
Higher PV Module Efficiency by a Novel CBS Bypass
There is an increasing focus on reducing costs and improving efficiency for photovoltaic (PV) cells and modules as well as finding a more efficient approach to the product manufacturing. This letter introduces an innovative solution to bypass shaded PV cells instead of a traditional Schottky diode, in order to avoid overheating of cells in the case of partial shading. The goal is to reduce the power dissipation and improve the general efficiency of a PV generator. A novel device called cool bypass switch is then presented. It is made up of a Power MOS driven by a controller with the task to charge a storage capacitor. Tests and comparisons with standard Schottky diodes are then performed an…
PV systems in the vertical walls: A comparison of innovative structures
This paper presents the performance comparison of PV windows with the purpose of tracing the behavior of next-generation systems, which could favor architectonical integration. More in detail, a dye sensitized solar cell (DSSC) and blue and grey thin film silicon panels have been analyzed. The systems can be placed behind a window or behind a wall of glass blocks. The three generation systems are then compared in terms of both efficiency and Fill Factor.
Baseband predistorter using direct spline computation
A baseband predistorter is presented. Key features of the predistorter reside in the use of cubic spline interpolation to generate predistorted input data to the power amplifier, without time convergence problems of classical approaches, with the goal of a reduction in the computational effort. Simulated behaviour of the proposed scheme is presented, demonstrating the effectiveness of the approach.
Harvesting rainfall energy by means of piezoelectric transducer
In this paper a detailed study on the piezoelectric energy harvesting of rainfall is presented. Different features have been taken into account in order to define the limits in this energy harvesting. Only commercial transducers have been considered: a lead zirconate titanate and polyvinylidene difluoride transducer.
Experimental investigation and characterization of innovative bifacial silicon solar cells
The interest towards bifacial PV technology has increased over the last years, due to its potential capability of obtaining higher efficiencies with respect to traditional monofacial cells. Thus, the aim of this work is to present an experimental investigation on an innovative photovoltaic technology, such as the bifacial solar cells based on monocrystalline substrate. This analysis is mainly based on the determination of the current density/voltage, power density/voltage, External Quantum Efficiency (EQE) and Laser Beam Induced Current (LBIC) characterization. Interesting results are presented and discussed, demonstrating that the bifacial silicon solar cells can be a very promising techno…
Piezoelectric Rainfall Energy Harvester Performance by an Advanced Arduino-Based Measuring System
This paper presents the performances of rainfall energy harvesting through the use of a piezoelectric transducer and an Arduino-based measuring system. Different studies agree on the possibility of generating electricity from rainfall, but to date, a study on measuring the quantity of energy produced during rainfall is still missing. The present study begins with results obtained from laboratory researchers using piezoelectric transducers and oscilloscopes, finalized to measure the energy produced from a single raindrop, and concludes with an ad hoc Arduino-based measuring system, aimed to measure the actual amount of electrical energy produced by a piezoelectric transducer that is exposed …
Harmonic solution of semiconductor transport equations for microwave and millimetre-wave device modelling
The transport equations for charges in a semiconductor have been solved for a periodic voltage excitation by means of a harmonic approach, for modelling of microwave and millimetre-wave active devices. The solution is based on the expansion of the unknown physical quantities in Fourier series in the time domain, and on the discretisation in the space domain. A Waveform-Balance technique in the time domain is used to solve the resulting non-linear equations system. In this way the time step is determined only by Nyquist's sampling requirements at the operating frequency, irrespective of the relaxation times of the semiconductor. This approach allows for a longer time step, and therefore a sh…
Piezoelectric model of rainfall energy harvester
In this paper a model to predict the harvest of the energy contained in rainfall by means of piezoelectric transducers is presented. Different studies agree on the level of suitable generated voltage on the electrodes of a piezoelectric transducer subjected to rainfall, but a complete characterization on the supplied power is still missing. This work, in order to limit optimistic forecasts, compares the behavior of the transducers subjected to real and artificial rainfall, a condition that has shown promising behavior in laboratory.