0000000001203157

AUTHOR

Rüdiger Hübler

Tryptophan quenching as linear sensor for oxygen binding of arthropod hemocyanins.

Oxygen binding of hemocyanins results in an absorption band around 340nm and a strong quenching of the intrinsic tryptophan fluorescence. Our study analyses in detail the fluorescence quenching within two hemocyanins, a hexamer (Panulirus interruptus) and a 4 x 6-mer (Eurypelma californicum). Based on the comparison of calculated and measured transfer efficiencies we could show that: (1) For both hemocyanins FRET (fluorescence resonance energy transfer) is exclusively responsible for quenching of the tryptophan fluorescence upon oxygen binding. (2) Tryptophan quenching by FRET is independent of the oxy- or deoxy conformation of the protein. (3) The quenching takes place at the subunit level…

research product

On the stability of the 24-meric hemocyanin from Eurypelma californicum.

The stability of the 24-meric hemocyanin from Eurypelma californicum towards various denaturants (GdnHCl, urea, urea derivatives and salts of the Hofmeister series) indicates that the quaternary structure is stabilized by hydrophilic and polar forces. Thus, the interaction between the seven different subunit types of this cheliceratan hemocyanin is comparable with that of the closely related crustacean hemocyanins. In contrast, no significant influence of divalent ions such as Ca2+ and Mg2+ on the stability is observed at pH 8.0 and pH 8.5 but not at pH 7.0. Studies, both in the presence of urea and GdnHCl indicate that the denaturation process consists of a dissociation of the oligomeric s…

research product