0000000001203530
AUTHOR
Aravindhan Ganesan
Density functional study of Cu2+-phenylalanine complex under micro-solvation environment
Abstract We present an atomistic study carried out using density functional calculations including structural relaxations and Car–Parrinello Molecular Dynamics (CPMD) simulations, aiming to investigate the structures of phenylalanine-copper (II) ([Phe-Cu] 2+ ) complexes and their micro-solvation processes. The structures of the [Phe-Cu] 2+ complex with up to four water molecules are optimized using the B3LYP/6-311++G** model in gas phase to identify the lowest energy structures at each degree of solvation ( n = 0–4). It is found that the phenylalanine appears to be in the neutral form in isolated and mono-hydrated complexes, but in the zwitterionic form in other hydrated complexes (with n …
CPMD simulation of Cu2+ -- phenylalanine complex under micro-solvated environment
The study combines DFT calculations and CPMD simulations to investigate the structures of phenylalanine-copper (II) ([Phe-Cu]2+) complexes and the micro-solvation processes. ....It is found that the phenylalanine moiety appears to be in the neutral form in isolated and mono-hydrated complexes, but in the zwitterionic form in other hydrated complexes (with n no less than 2). .... The present CPMD simulations reveal that the maximum coordination of Cu2+ in the presence of the Phe ligand does not exceed four: the oxygen atoms from three water molecules and one carboxyl oxygen atom of Phe. Any excess water molecules will migrate to the second solvation shell. Moreover a unique structural motif …