Deciding the fate of the false Mott transition in two dimensions by exact quantum Monte Carlo methods
We present an algorithm for the computation of unbiased Green functions and self-energies for quantum lattice models, free from systematic errors and valid in the thermodynamic limit. The method combines direct lattice simulations using the Blankenbecler Scalapino-Sugar quantum Monte Carlo (BSS-QMC) approach with controlled multigrid extrapolation techniques. We show that the half-filled Hubbard model is insulating at low temperatures even in the weak-coupling regime; the previously claimed Mott transition at intermediate coupling does not exist.