6533b86efe1ef96bd12cb5ff

RESEARCH PRODUCT

Deciding the fate of the false Mott transition in two dimensions by exact quantum Monte Carlo methods

N. BlümerD. Rost

subject

PhysicsHistoryHubbard modelStrongly Correlated Electrons (cond-mat.str-el)Quantum Monte CarloComputationExtrapolationFOS: Physical sciencesComputer Science ApplicationsEducationMott transitionCondensed Matter - Strongly Correlated ElectronsMultigrid methodThermodynamic limitCondensed Matter::Strongly Correlated ElectronsStatistical physicsQuantum

description

We present an algorithm for the computation of unbiased Green functions and self-energies for quantum lattice models, free from systematic errors and valid in the thermodynamic limit. The method combines direct lattice simulations using the Blankenbecler Scalapino-Sugar quantum Monte Carlo (BSS-QMC) approach with controlled multigrid extrapolation techniques. We show that the half-filled Hubbard model is insulating at low temperatures even in the weak-coupling regime; the previously claimed Mott transition at intermediate coupling does not exist.

https://dx.doi.org/10.48550/arxiv.1504.05090