0000000001205282

AUTHOR

Yongjie Zhu

Deriving electrophysiological brain network connectivity via tensor component analysis during freely listening to music

Recent studies show that the dynamics of electrophysiological functional connectivity is attracting more and more interest since it is considered as a better representation of functional brain networks than static network analysis. It is believed that the dynamic electrophysiological brain networks with specific frequency modes, transiently form and dissolve to support ongoing cognitive function during continuous task performance. Here, we propose a novel method based on tensor component analysis (TCA), to characterize the spatial, temporal, and spectral signatures of dynamic electrophysiological brain networks in electroencephalography (EEG) data recorded during free music-listening. A thr…

research product

Extracting multi-mode ERP features using fifth-order nonnegative tensor decomposition

Background Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization may hamper mode specification and spoil the interaction information among different modes. New method In this study, we applied a fifth-order tensor decomposition to a set of fifth-order ERP data collected by exerting proprioceptive stimulus on left and right…

research product

Corrigendum to ‘Automated detection and localization system of myocardial infarction in single-beat ECG using Dual-Q TQWT and wavelet packet tensor decomposition’ [Computer Methods and Programs in Biomedicine 184 (2020) 105120]

research product

Exploring Frequency-Dependent Brain Networks from Ongoing EEG Using Spatial ICA During Music Listening

Recently, exploring brain activity based on functional networks during naturalistic stimuli especially music and video represents an attractive challenge because of the low signal-to-noise ratio in collected brain data. Although most efforts focusing on exploring the listening brain have been made through functional magnetic resonance imaging (fMRI), sensor-level electro- or magnetoencephalography (EEG/MEG) technique, little is known about how neural rhythms are involved in the brain network activity under naturalistic stimuli. This study exploited cortical oscillations through analysis of ongoing EEG and musical feature during freely listening to music. We used a data-driven method that co…

research product

Distinct Patterns of Functional Connectivity During the Comprehension of Natural, Narrative Speech.

Recent continuous task studies, such as narrative speech comprehension, show that fluctuations in brain functional connectivity (FC) are altered and enhanced compared to the resting state. Here, we characterized the fluctuations in FC during comprehension of speech and time-reversed speech conditions. The correlations of Hilbert envelope of source-level EEG data were used to quantify FC between spatially separate brain regions. A symmetric multivariate leakage correction was applied to address the signal leakage issue before calculating FC. The dynamic FC was estimated based on a sliding time window. Then, principal component analysis (PCA) was performed on individually concatenated and te…

research product

Automated detection and localization system of myocardial infarction in single-beat ECG using Dual-Q TQWT and wavelet packet tensor decomposition.

Abstract Background and objective It is challenging to conduct real-time identification of myocardial infarction (MI) due to artifact corruption and high dimensionality of multi-lead electrocardiogram (ECG). In the present study, we proposed an automated single-beat MI detection and localization system using dual-Q tunable Q-factor wavelet transformation (Dual-Q TQWT) denoising algorithm. Methods After denoising and segmentation of ECG, a fourth-order wavelet tensor (leads × subbands × samples × beats) was constructed based on the discrete wavelet packet transform (DWPT), to represent the features considering the information of inter-beat, intra-beat, inter-frequency, and inter-lead. To red…

research product

Sustaining Attention for a Prolonged Duration Affects Dynamic Organizations of Frequency-Specific Functional Connectivity

Sustained attention encompasses a cascade of fundamental functions. The human ability to implement a sustained attention task is supported by brain networks that dynamically formed and dissolved through oscillatory synchronization. The decrement of vigilance induced by prolonged task engagement affects sustained attention. However, little is known about which stage or combinations are affected by vigilance decrement. Here, we applied an analysis framework composed of weighted phase lag index (wPLI) and tensor component analysis (TCA) to an EEG dataset collected during 80 min sustained attention task to examine the electrophysiological basis of such effect. We aimed to characterize the phase…

research product

Automated detection and localization system of myocardial infarction in single-beat ECG using Dual-Q TQWT and wavelet packet tensor decomposition

Background and objective. It is challenging to conduct real-time identification of myocardial infarction (MI) due to artifact corruption and high dimensionality of multi-lead electrocardiogram (ECG). In the present study, we proposed an automated single-beat MI detection and localization system using dual-Q tunable Q-factor wavelet transformation (Dual-Q TQWT) denoising algorithm. Methods. After denoising and segmentation of ECG, a fourth-order wavelet tensor (leads × subbands × samples × beats) was constructed based on thediscretewavelet packet transform (DWPT), to represent the features considering the information of inter-beat, intra-beat, inter-frequency, and inter-lead. To reduce the t…

research product

Increasing Stability of EEG Components Extraction Using Sparsity Regularized Tensor Decomposition

Tensor decomposition has been widely employed for EEG signal processing in recent years. Constrained and regularized tensor decomposition often attains more meaningful and interpretable results. In this study, we applied sparse nonnegative CANDECOMP/PARAFAC tensor decomposition to ongoing EEG data under naturalistic music stimulus. Interesting temporal, spectral and spatial components highly related with music features were extracted. We explored the ongoing EEG decomposition results and properties in a wide range of sparsity levels, and proposed a paradigm to select reasonable sparsity regularization parameters. The stability of interesting components extraction from fourteen subjects’ dat…

research product

Individual differences in working memory capacity are unrelated to the magnitudes of retrocue benefits

AbstractPrevious studies have associated visual working memory (VWM) capacity with the use of internal attention. Retrocues, which direct internal attention to a particular object or feature dimension, can improve VWM performance (i.e., retrocue benefit, RCB). However, so far, no study has investigated the relationship between VWM capacity and the magnitudes of RCBs obtained from object-based and dimension-based retrocues. The present study explored individual differences in the magnitudes of object- and dimension-based RCBs and their relationships with VWM capacity. Participants completed a VWM capacity measurement, an object-based cue task, and a dimension-based cue task. We confirmed tha…

research product

Exploring Frequency-dependent Brain Networks from ongoing EEG using Spatial ICA during music listening

AbstractRecently, exploring brain activity based on functional networks during naturalistic stimuli especially music and video represents an attractive challenge because of the low signal-to-noise ratio in collected brain data. Although most efforts focusing on exploring the listening brain have been made through functional magnetic resonance imaging (fMRI), sensor-level electro- or magnetoencephalography (EEG/MEG) technique, little is known about how neural rhythms are involved in the brain network activity under naturalistic stimuli. This study exploited cortical oscillations through analysis of ongoing EEG and musical feature during free-listening to music. We used a data-driven method t…

research product

Distinct Patterns of Functional Connectivity During the Comprehension of Natural, Narrative Speech

Recent continuous task studies, such as narrative speech comprehension, show that fluctuations in brain functional connectivity (FC) are altered and enhanced compared to the resting state. Here, we characterized the fluctuations in FC during comprehension of speech and time-reversed speech conditions. The correlations of Hilbert envelope of source-level EEG data were used to quantify FC between spatially separate brain regions. A symmetric multivariate leakage correction was applied to address the signal leakage issue before calculating FC. The dynamic FC was estimated based on a sliding time window. Then, principal component analysis (PCA) was performed on individually concatenated and tem…

research product

Discovering dynamic task-modulated functional networks with specific spectral modes using MEG.

Efficient neuronal communication between brain regions through oscillatory synchronization at certain frequencies is necessary for cognition. Such synchronized networks are transient and dynamic, established on the timescale of milliseconds in order to support ongoing cognitive operations. However, few studies characterizing dynamic electrophysiological brain networks have simultaneously accounted for temporal non-stationarity, spectral structure, and spatial properties. Here, we propose an analysis framework for characterizing the large-scale phase-coupling network dynamics during task performance using magnetoencephalography (MEG). We exploit the high spatiotemporal resolution of MEG to m…

research product

The two-stage process in visual working memory consolidation

AbstractTwo hypotheses have been proposed to explain the formation manner for visual working memory (VWM) representations during the consolidation process: an all-or-none process hypothesis and a coarse-to-fine process hypothesis. However, neither the all-or-none process hypothesis nor the coarse-to-fine process hypothesis can stipulate clearly how VWM representations are formed during the consolidation process. In the current study, we propose a two-stage process hypothesis to reconcile these hypotheses. The two-stage process hypothesis suggests that the consolidation of coarse information is an all-or-none process in the early consolidation stage, while the consolidation of detailed infor…

research product

Altered EEG Oscillatory Brain Networks During Music-Listening in Major Depression

To examine the electrophysiological underpinnings of the functional networks involved in music listening, previous approaches based on spatial independent component analysis (ICA) have recently been used to ongoing electroencephalography (EEG) and magnetoencephalography (MEG). However, those studies focused on healthy subjects, and failed to examine the group-level comparisons during music listening. Here, we combined group-level spatial Fourier ICA with acoustic feature extraction, to enable group comparisons in frequency-specific brain networks of musical feature processing. It was then applied to healthy subjects and subjects with major depressive disorder (MDD). The music-induced oscil…

research product

Dynamic Community Detection for Brain Functional Networks during Music Listening with Block Component Analysis

Publisher Copyright: Author The human brain can be described as a complex network of functional connections between distinct regions, referred to as the brain functional network. Recent studies show that the functional network is a dynamic process and its community structure evolves with time during continuous task performance. Consequently, it is important for the understanding of the human brain to develop dynamic community detection techniques for such time-varying functional networks. Here, we propose a temporal clustering framework based on a set of network generative models and surprisingly it can be linked to Block Component Analysis to detect and track the latent community structure…

research product

Unsupervised representation learning of spontaneous MEG data with nonlinear ICA

Funding Information: We wish to thank the reviewers and editors for the useful comments to improve the paper a lot. We thank Dr. Hiroshi Morioka for the useful discussion at the beginning of the project. L.P. was funded in part by the European Research Council (No. 678578 ). A.H. was supported by a Fellowship from CIFAR, and the Academy of Finland. The authors acknowledge the computational resources provided by the Aalto Science-IT project, and also wish to thank the Finnish Grid and Cloud Infrastructure (FGCI) for supporting this project with computational and data storage resources. | openaire: EC/H2020/678578/EU//HRMEG Resting-state magnetoencephalography (MEG) data show complex but stru…

research product

Decreased intersubject synchrony in dynamic valence ratings of sad movie contents in dysphoric individuals

Emotional reactions to movies are typically similar between people. However, depressive symptoms decrease synchrony in brain responses. Less is known about the effect of depressive symptoms on intersubject synchrony in conscious stimulus-related processing. In this study, we presented amusing, sad and fearful movie clips to dysphoric individuals (those with elevated depressive symptoms) and control participants to dynamically rate the clips’ valences (positive vs. negative). We analysed both the valence ratings’ mean values and intersubject correlation (ISC). We used electrodermal activity (EDA) to complement the measurement in a separate session. There were no group differences in either t…

research product

Measuring the Task Induced Oscillatory Brain Activity Using Tensor Decomposition

The characterization of dynamic electrophysiological brain activity, which form and dissolve in order to support ongoing cognitive function, is one of the most important goals in neuroscience. Here, we introduce a method with tensor decomposition for measuring the task-induced oscillations in the human brain using electroencephalography (EEG). The time frequency representation of source-reconstructed singletrail EEG data constructed a third-order tensor with three factors of time ∗ trails, frequency and source points. We then used a non-negative Canonical Polyadic decomposition (NCPD) to identify the temporal, spectral and spatial changes in electrophysiological brain activity. We validate …

research product

Response to Discussion on Y. Zhu, X. Wang, K. Mathiak, P. Toiviainen, T. Ristaniemi, J. Xu, Y. Chang and F. Cong, Altered EEG Oscillatory Brain Networks During Music-Listening in Major Depression, International Journal of Neural Systems, Vol. 31, No. 3 (2021) 2150001 (14 pages).

research product

Dissociable Effects of Reward on P300 and EEG Spectra Under Conditions of High vs. Low Vigilance During a Selective Visual Attention Task

The influence of motivation on selective visual attention in states of high vs. low vigilance is poorly understood. To explore the possible differences in the influence of motivation on behavioral performance and neural activity in high and low vigilance levels, we conducted a prolonged 2 h 20 min flanker task and provided monetary rewards during the 20- to 40- and 100- to 120-min intervals of task performance. Both the behavioral and electrophysiological measures were modulated by prolonged task engagement. Moreover, the effect of reward was different in high vs. low vigilance states. The monetary reward increased accuracy and decreased the reaction time (RT) and number of omitted response…

research product

Individual Differences in Working Memory Capacity Are Unrelated to the Magnitude of Benefits from Object- and Dimension-Based Retro-Cues

research product

Individual Differences in Working Memory Capacity Are Unrelated to the Magnitude of Benefits from Object- and Dimension-Based Retro-Cues

research product