A Concurrent Neural Classifier for HTML Documents Retrieval
A neural based multi-agent system for automatic HTML pages retrieval is presented. The system is based on the EαNet architecture, a neural network having good generalization capabilities and able to learn the activation function of its hidden units. The starting hypothesis is that the HTML pages are stored in networked repositories. The system goal is to retrieve documents satisfying a user query and belonging to a given class (i.e. documents containing the word “football” and talking about “Sports”). The system is composed by three interacting agents: the EαNet Neural Classifier Mobile Agent, the Query Agent, and the Locator Agent. The whole system was successfully implemented exploiting t…