0000000001208522

AUTHOR

A Grant

showing 10 related works from this author

Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and Ic…

2019

[EN] Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the out¿ow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCub…

Astrofísicacollapse [supernova]neutron star: binaryEVENTS GW150914Gravitació010504 meteorology & atmospheric sciencesneutrino: energy: highAstronomyRAYBinary numberbinary [neutron star]Astrophysics7. Clean energy01 natural sciencesPhysical ChemistryAtomicIceCubeneutrinoParticle and Plasma PhysicsAstronomi astrofysik och kosmologiblack holeAstronomy Astrophysics and CosmologyLIGO010303 astronomy & astrophysicsgravitational waveELECTROMAGNETIC SIGNALSQCQBSettore FIS/01PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HE[PHYS]Physics [physics]Astrophysics::Instrumentation and Methods for Astrophysicsneutrinosgravitational waves; neutrinos520 Astronomie und zugeordnete Wissenschaftenddc:observatorySupernovagravitational wavesastrophysics: densityPhysical SciencesNeutrinoAstrophysics - High Energy Astrophysical Phenomenagravitational waves; neutrinos; Astronomy and Astrophysics; Space and Planetary ScienceAstronomical and Space SciencessignaturePhysical Chemistry (incl. Structural)supernova: collapseAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & AstrophysicsGravitational wavesemission [gravitational radiation]Ones gravitacionalsCoincident0103 physical sciencesGravitational Waves Neutrinos LIGO Virgo Antares IceCubeNuclearddc:530Neutrinsenergy: high [neutrino]NeutrinosSTFCAstrophysiqueAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesScience & TechnologyANTARESGravitational waveVirgoOrganic ChemistryAstronomyRCUKMolecularAstronomy and AstrophysicsAstronomieAstronomy and Astrophysic530 PhysikLIGOSciences de l'espaceBlack holemessengerNeutron starAntaresPhysics and AstronomySpace and Planetary ScienceFISICA APLICADA:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]gravitational radiation: emissiondensity [astrophysics]ddc:520[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]EMISSION
researchProduct

Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012 with ANTARES and IceCube

2017

[EN] The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by ANTARES, within +/- 500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission …

POINT-LIKEGravitational-wave observatoryPhysics and Astronomy (miscellaneous)[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyELECTROMAGNETIC COUNTERPARTSastro-ph.HE; astro-ph.HEAstrophysics01 natural sciences7. Clean energylocalizationIceCubeBinary black holeLIGO010303 astronomy & astrophysicsTelescopeGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEFollow-upData-acquisition systemobservatoryNeutrino detectorElectromagnetic counterpartsSIMULATIONBlack-hole mergersLigoGamma-ray burstsNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHost galaxiesSimulationGravitational waveBLACK-HOLE MERGERSAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesDATA-ACQUISITION SYSTEMGravitational wavesneutrino: productionGeneral Relativity and Quantum CosmologyBinary black holeOnes gravitacionalsLiGO Observatory0103 physical sciencesNeutrinoGW151226ddc:530NeutrinsNeutrinos010306 general physicsPoint-likeANTARESCosmologiaGravitational wavebackgroundgravitational radiationAstronomy530 PhysikLIGONeutron starGravitational Waves Neutrinos Antares IceCube LIGOAntaresPhysics and Astronomyblack hole: binary13. Climate action:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]FISICA APLICADAAstronomiaDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]FOLLOW-UPPhysical Review D. Particles and Fields
researchProduct

Properties of the Binary Neutron Star Merger GW170817

2019

On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which ar…

AstrofísicaGravitacióneutron star: binaryAstronomyGeneral Physics and AstronomyBinary numberAstrophysicsELECTROMAGNETIC COUNTERPARTspin01 natural sciencesGeneral Relativity and Quantum CosmologyGRAVITATIONAL-WAVESlocalization010305 fluids & plasmasGravitational wave detectorsEQUATIONenergy: densityLIGOGEO600QCastro-ph.HESettore FIS/01PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSSettore FIS/05PhysicsEquations of stateGravitational effectsGravitational-wave signalsDeformability parameterAmplitudePhysical SciencesPhysical effectsINSPIRALING COMPACT BINARIES[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Spectral energy densityAstrophysics - High Energy Astrophysical PhenomenaPARAMETER-ESTIMATIONBinary neutron starsdata analysis methodgr-qcQC1-999Physics MultidisciplinaryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesBayesianGravimeterselectromagnetic field: productionPhysics and Astronomy (all)galaxy: binary0103 physical sciencesddc:530SDG 7 - Affordable and Clean Energy010306 general physicsgravitational radiation: frequencySTFCAstrophysics::Galaxy Astrophysicsequation of stateLIGHT CURVESEquation of stateScience & Technology/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energySpinsgravitational radiationRCUKSpectral densityKILONOVATRANSIENTSbinary: compactStarsGEO600GalaxyLIGOgravitational radiation detectorNeutron starVIRGOPhysics and Astronomygravitational radiation: emissionRADIATIONBayesian AnalysisDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

DETERMINATION OF ALPHA(S) FOR B-QUARKS AT THE Z(0) RESONANCE

1993

The strong coupling constant for b quarks has been determined, and its flavour independence, as predicted by QCD, investigated. The analysis involved events with lepton candidates selected from approximately 356 000 hadronic decays of the Z0, collected by the DELPHI detector at LEP in 1990 and 199 1. A method based on a direct comparison of the three-jet fraction in a b enriched sample, selected by requiring leptons with large momenta and transverse momenta, to that of the entire hadronic sample, illustrated the significant effect of the b quark mass on the multi-jet cross section, and verified the flavour independence of the strong coupling constant to an accuracy of +/- 6%. A second proce…

QuarkCHARMED MESONSNuclear and High Energy PhysicsParticle physicsHEAVY FLAVOR PRODUCTIONElectron–positron annihilationHigh Energy Physics::LatticeFRAGMENTATION FUNCTIONSFlavourHadron01 natural sciencesBottom quarkNuclear physicsMONTE-CARLO0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentZ DECAYSPhysicsCoupling constantQuantum chromodynamics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyJET PRODUCTION-RATESQCDSTRING MODELHigh Energy Physics::ExperimentFísica nuclearHEAVY FLAVOR PRODUCTION; JET PRODUCTION-RATES; E+ E ANNIHILATION; Z0 RESONANCE; FRAGMENTATION FUNCTIONS; CHARMED MESONS; STRING MODEL; MONTE-CARLO; Z DECAYS; QCDE+ E ANNIHILATIONZ0 RESONANCEParticle Physics - ExperimentLepton
researchProduct

DETERMINATION OF ALPHA-S FROM THE SCALING VIOLATION IN THE FRAGMENTATION FUNCTIONS IN E+E- ANNIHILATION

1993

A determination of the hadronic fragmentation functions of the Z0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 less-than-or-equal-to Q2 less-than-or-equal-to 8312 GeV2 and x (= p(h)/E(beam)) > 0.08. A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: alpha(s)(M(Z)) = 0.118 +/- 0.005. The corresponding QCD scale for five quark flavours is: LAMBDA(MS)(5)BAR = 230 +/- 60 MeV.

QuarkNuclear and High Energy PhysicsParticle physicsHADRONIC-Z-DECAYS; JET PRODUCTION-RATES; LUND MONTE-CARLO; LEADING ORDER; QUANTUM CHROMODYNAMICS; PERTURBATIVE QCD; PARTON DENSITIES; RESONANCE; SCATTERING; PHYSICSLUND MONTE-CARLOHigh Energy Physics::LatticeElectron–positron annihilationHadronElementary particlePARTON DENSITIES01 natural sciencesNuclear physicsPHYSICS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PERTURBATIVE QCDSCATTERING010306 general physicsNuclear ExperimentBosonQuantum chromodynamicsPhysicsCoupling constantAnnihilationQUANTUM CHROMODYNAMICS010308 nuclear & particles physicsJET PRODUCTION-RATESLEADING ORDERHigh Energy Physics::PhenomenologyRESONANCEFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentHADRONIC-Z-DECAYSPHYSICS LETTERS B
researchProduct

Large-angle production of charged pions with 3-12.9 GeV/c incident protons on nuclear targets

2008

Measurements of the double-differential pi(+/-) production cross section in the momentum range 100 <= p <= 800 MeV/c and angle range 0.35 <= theta <= 2.15 rad in proton-beryllium, proton-carbon, proton-aluminium, proton-copper, proton-tin, proton-tantalum, and proton-lead collisions are presented. The data were taken with the large-acceptance HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 to 12.9 GeV/c hitting a target with a thickness of 5% of a nuclear interaction length. Tracking and identification of the produced particles was performed by using a small-radius cylindrical Time Projection Chamber (TPC) placed inside a …

Nuclear and High Energy PhysicsMesonProtonPhysics::Instrumentation and DetectorsHadronNuclear TheoryFOS: Physical sciencesddc:500.27. Clean energy01 natural sciencesParticle detectorHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear interaction length010306 general physicsNuclear ExperimentPhysicsTime projection chamber010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleFísicaCharged particlePhysics::Accelerator PhysicsHigh Energy Physics::ExperimentAtomic physicsNucleonParticle Physics - Experiment
researchProduct

Search for eccentric binary black hole mergers with advanced LIGO and advanced Virgo during their first and second observing runs

2019

When formed through dynamical interactions, stellar-mass binary black holes may retain eccentric orbits ($e&gt;0.1$ at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically-formed binaries from isolated binary black hole mergers. Current template-based gravitational-wave searches do not use waveform models associated to eccentric orbits, rendering the search less efficient to eccentric binary systems. Here we present results of a search for binary black hole mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. The search uses min…

AstrofísicaGravitació010504 meteorology & atmospheric sciencesIMPACTAstronomyWAVESBinary numberAstrophysicsgravitational waves; black hole; LIGO; VirgoLIGO-Virgo01 natural sciencesRendering (computer graphics)GravitationElliptical orbitCOMPACT-OBJECT BINARIESblack holeEccentricCOMPACT-OBJECT BINARIES; YOUNG STAR-CLUSTERS; EVOLUTION; PERTURBATIONS; PROGENITORS; IMPACT;WAVESEccentricity (behavior)LIGO010303 astronomy & astrophysicsorbitQCmedia_commonQBSettore FIS/01PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PROGENITORSAstrophysical black holesGravitational waves; Elliptical orbits; Astrophysical black holesPERTURBATIONSJustice and Strong Institutionsgravitational wavesPhysical SciencesAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaYOUNG STAR-CLUSTERSGravitational wavedata analysis methodSDG 16 - Peacemedia_common.quotation_subjectGravitational waves Elliptical orbits Astrophysical black holesFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & AstrophysicsGravitational wavesElliptical orbitsGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black holebinary: coalescencestatistical analysis0103 physical sciencesWaveformSTFC0105 earth and related environmental sciencesScience & Technologybinary: formationVirgoSDG 16 - Peace Justice and Strong Institutionsgravitational radiationRCUKAstronomy and Astrophysics/dk/atira/pure/sustainabledevelopmentgoals/peace_justice_and_strong_institutionsLIGOEVOLUTIONgravitational radiation detectordetector: sensitivityVIRGOPhysics and Astronomyblack hole: binarySpace and Planetary Sciencegravitational radiation: emissioneccentric BBHstar: mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run

2019

We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO’s second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between \ud0.2\ud \ud \udM\ud⊙\ud–\ud1.0\ud \ud \udM\ud⊙\ud. We use the null result to constrain the binary merger rate of (\ud0.2\ud \ud \udM\ud⊙\ud, \ud0.2\ud \ud \udM\ud⊙\ud) binaries to be less than \ud3.7\ud×\ud10\ud5\ud \ud \udGpc\ud−\ud3\ud \udyr\ud−\ud1\udand the binary …

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenbinary: massAstrofísicaGravitacióFormation modeldensity: fluctuationAstronomyGeneral Physics and Astronomydetector: networkspin01 natural sciencesGeneral Relativity and Quantum CosmologyLIMITSblack hole: formationddc:550black holeDark MatterAstrophysics::Solar and Stellar AstrophysicsLIGOQCQBnucleus: interactionSettore FIS/01astro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)gravitational wave; physics; astronomyPhysicsarticleDensity fluctuationgravitational wavesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]astro-ph.COAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenablack hole: primordialGravitationAstrophysics - Cosmology and Nongalactic AstrophysicsMatter densitydensity: primordialCosmology and Nongalactic Astrophysics (astro-ph.CO)coolinggr-qcAstrophysics::High Energy Astrophysical PhenomenaPhysics MultidisciplinaryCooling mechanismPrimordial black holesFOS: Physical sciencesdark matter: densityGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesNuclear interactionGravitation and AstrophysicsMergingGeneral Relativity and Quantum Cosmologynull resultSettore FIS/05 - Astronomia e Astrofisicabinary: coalescence0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsSTFCScience & Technologymass: solarCosmologiaStellar evolutions010308 nuclear & particles physicsMatter fractionsgravitational radiationRCUKblack hole: massGalaxiesbinary: compactStarsgravitational radiation detectordetector: sensitivityVIRGOPhysics and Astronomygravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Gravitational waves Black holes (astronomy) Gravitational self forcePhysical Review Letters
researchProduct

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

2017

On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times 10^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short gamma-ray bursts. We use the ob…

AstrofísicaGravitacióneutron star: binaryclose [binaries]Astronomy[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]BATSE OBSERVATIONSgamma-ray burst: generalEQUIVALENCE PRINCIPLEEXTENDED EMISSIONastro-ph.HE; astro-ph.HEAstrophysicsKilonovageneral [gamma-ray burst]01 natural sciences7. Clean energyGeneral Relativity and Quantum Cosmologyphoton: velocityPROMPT EMISSIONLIGOclose gamma-ray burst: general gravitational waves [binaries]gravitational wave010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)BURST SPECTRAQCQBPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)binaries: closeGRBEQUATION-OF-STATEviolation: Lorentzgamma ray: emissiongravitational wavesAstrophysics - High Energy Astrophysical PhenomenaGWradiation: electromagneticAfterglow Light CurvesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstinvariance: LorentzGW GRB LIGO Virgo Fermi BNSGLASTOptical Afterglows0103 physical sciencesgamma ray: detectorBinaries: close; gamma-ray burst: general; gravitational wavesSTFCFermi010308 nuclear & particles physicsGravitational waveVirgogravitational radiationRCUKAstronomy and AstrophysicsAstronomy and Astrophysictime delaysensitivityShapiro delayLIGORedshiftNeutron starVIRGOPhysics and AstronomyHOST GALAXYCPT VIOLATION13. Climate actiongravitationSpace and Planetary ScienceLUMINOSITY FUNCTIONVIEWING ANGLEbinaries: close; gamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceBNSspectrometerGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]redshift: measuredFermi Gamma-ray Space TelescopeAstrophysical Journal Letters
researchProduct

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

2019

We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1$\mathrm{M}_\odot$ during the first and second observing runs of the Advanced gravitational-wave detector network. During the first observing run (O1), from September $12^\mathrm{th}$, 2015 to January $19^\mathrm{th}$, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November $30^\mathrm{th}$, 2016 to August $25^\mathrm{th}$, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary …

AstrofísicaDYNAMICSGravitacióneutron star: binaryAstronomyGeneral Physics and AstronomyBinary numberAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmology010305 fluids & plasmasgravitational waves black holesAstrophysicSIGNALSPopulation DistributionsLIGOQCQBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HESettore FIS/01gravitational radiation detector: networkPROGENITORSPhysicsgravitational wavesPhysical Sciencesastro-ph.CO[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaMETALLICITYAstrophysics - Cosmology and Nongalactic AstrophysicsGravitationCosmology and Nongalactic Astrophysics (astro-ph.CO)QC1-999gr-qcAstrophysics::High Energy Astrophysical PhenomenaPhysics MultidisciplinaryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsMASSAstrophysics; GravitationGeneral Relativity and Quantum CosmologyBinary black holebinary: coalescenceSYSTEMS0103 physical sciences010306 general physicsSTFCScience & TechnologyGravitational wavegravitational radiationRCUKGravitational Wave Physicsbinary: compactLIGOEVOLUTIONBlack holeNeutron starVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionBLACK-HOLERADIATIONINFERENCE[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct