0000000001212692
AUTHOR
J. Fernando Barbero G.
The combinatorics of the SU(2) black hole entropy in loop quantum gravity
We use the combinatorial and number-theoretical methods developed in previous work by the authors to study black hole entropy in the new proposal put forward by Engle, Noui and Perez. Specifically we give the generating functions relevant for the computation of the entropy and use them to derive its asymptotic behavior including the value of the Immirzi parameter and the coefficient of the logarithmic correction.
PRIME NUMBERS, QUANTUM FIELD THEORY AND THE GOLDBACH CONJECTURE
Motivated by the Goldbach conjecture in Number Theory and the abelian bosonization mechanism on a cylindrical two-dimensional spacetime we study the reconstruction of a real scalar field as a product of two real fermion (so-called \textit{prime}) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such prime fields and construct the corresponding Fock space by introducing creation operators $b_{p}^{\dag}$ --labeled by prime numbers $p$-- acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory and the assumption of the Riemann hypothesis, allow us to prove that the theory is not renormalizabl…
Combinatorics of the SU(2) black hole entropy in loop quantum gravity
We use the combinatorial and number-theoretical methods developed in previous works by the authors to study black hole entropy in the new proposal put forth by Engle, Noui, and Perez. Specifically, we give the generating functions relevant for the computation of the entropy and use them to derive its asymptotic behavior, including the value of the Immirzi parameter and the coefficient of the logarithmic correction.