0000000001213076

AUTHOR

Christoph Borner

showing 6 related works from this author

Conformational control of Bax localization and apoptotic activity by Pro168.

2004

In healthy cells, Bax resides inactive in the cytosol because its COOH-terminal transmembrane region (TMB) is tucked into a hydrophobic pocket. During apoptosis, Bax undergoes a conformational change involving NH2-terminal exposure and translocates to mitochondria to release apoptogenic factors. How this process is regulated remains unknown. We show that the TMB of Bax is both necessary and sufficient for mitochondrial targeting. However, its availability for targeting depends on Pro168 located within the preceding loop region. Pro168 mutants of Bax lack apoptotic activity, cannot rescue the apoptosis-resistant phenotype of Bax/Bak double knockout cells, and are retained in the cytosol even…

Models MolecularConformational changeProlineCell SurvivalProtein ConformationMutantMolecular Sequence DataApoptosisMitochondrionMitochondrial apoptosis-induced channelArticleCell Line03 medical and health sciencesMice0302 clinical medicineBcl-2-associated X proteinProto-Oncogene ProteinsAnimalsHumansAmino Acid Sequence030304 developmental biologybcl-2-Associated X Proteinapoptosis; Bcl-2 family; NH2-terminal exposure; mitochondria; targeting0303 health sciencesbiologyMembrane ProteinsCell BiologyPeptide FragmentsCell biologyTransport proteinMitochondriaCytosolProtein Transportbcl-2 Homologous Antagonist-Killer ProteinProto-Oncogene Proteins c-bcl-2030220 oncology & carcinogenesisbiology.proteinBcl-2 Homologous Antagonist-Killer ProteinHeLa CellsThe Journal of cell biology
researchProduct

Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes

2009

Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guid…

MESH: Cell DeathcytofluorometryMESH : Microscopy Fluorescenceved/biology.organism_classification_rank.speciesCellMESH: Flow CytometryMESH: Microscopy FluorescenceApoptosisfluorescence microscopyMESH: Eukaryotic CellsAnnexin Vnecrosis0302 clinical medicineEukaryotic Cells/cytologyMitochondrial membrane permeabilizationScanningMESH : ImmunoblottingGeneticsApoptosis; Cell Death; Eukaryotic Cells/cytology; Flow Cytometry; Guidelines as Topic; Humans; Immunoblotting; Microscopy Electron Scanning; Microscopy Fluorescence; Spectrometry Fluorescence0303 health sciencesMicroscopyMESH : Spectrometry FluorescenceMESH: ImmunoblottingCell DeathMESH: Guidelines as Topic//purl.org/becyt/ford/3.1 [https]Bioquímica y Biología MolecularFlow Cytometry3. Good healthTunelMedicina Básicamedicine.anatomical_structureEukaryotic Cellscaspases030220 oncology & carcinogenesis//purl.org/becyt/ford/3 [https]MESH: Spectrometry FluorescenceMESH : Microscopy Electron ScanningProgrammed cell deathautophagyCIENCIAS MÉDICAS Y DE LA SALUDMESH: Microscopy Electron ScanningMESH : Flow CytometrycaspaseImmunoblottingGuidelines as TopicComputational biologyBiologyElectronFluorescenceArticle03 medical and health sciencesSettore MED/04 - PATOLOGIA GENERALEmedicine[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyModel organismddc:612mitotic catastropheMolecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH : Guidelines as Topic030304 developmental biologycell death; Apoptosis; caspase; autophagy; Oxidative stress; fluorescence microscopyMESH: Humansved/biologySpectrometryInterpretation (philosophy)MESH: ApoptosisMESH : Eukaryotic CellsMESH : HumansApoptosis; Eukaryotic Cells; Flow Cytometry; Guidelines as Topic; Humans; Immunoblotting; Microscopy Electron Scanning; Microscopy Fluorescence; Spectrometry Fluorescence; Cell Death; Molecular Biology; Cell Biologyimmunofluorescence microscopyCell BiologySpectrometry FluorescenceMicroscopy FluorescenceOxidative stressMESH : Cell DeathCancer cellMicroscopy Electron ScanningMESH : Apoptosis
researchProduct

Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

2015

Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ?accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. "Regulated cell death" (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to…

Biochemical Manifestations of Cell DeathISCHEMIA-REPERFUSION INJURYApoptosisReviewTransduction (genetics)0302 clinical medicineCASPASE INHIBITION SWITCHESAnimals; Humans; Terminology as Topic; Apoptosis; Signal Transduction610 Medicine & healthCaspaseTUMOR-NECROSIS-FACTOR0303 health sciencesSettore BIO/17biologySettore BIO/11NeurodegenerationSettore BIO/13APOPTOSIS3. Good healthMedicina Básicacell death030220 oncology & carcinogenesiscell death; Morphologic Aspects of Cell Death; Biochemical Manifestations of Cell DeathSignal transductionDOMAIN-LIKE PROTEINIntracellularHumanSignal TransductionNecroptosiCYTOCHROME-C RELEASEOUTER-MEMBRANE PERMEABILIZATIONProgrammed cell deathCIENCIAS MÉDICAS Y DE LA SALUDSettore BIO/06Inmunología610 Medicine & healthCELL DEATHNOQ-VD-OPH03 medical and health sciencesSettore MED/04 - PATOLOGIA GENERALEddc:570Terminology as TopicAPOPTOSIS-INDUCING FACTORMIXED LINEAGE KINASEmedicineAnimalsHumansAnimals; Humans; Terminology as Topic; Apoptosis; Signal Transduction; Molecular Biology; Cell BiologyMorphologic Aspects of Cell DeathSettore BIO/10Molecular Biology030304 developmental biologyAnimalCell growthApoptosiBiology and Life SciencesCell Biologymedicine.diseaseMITOCHONDRIAL PERMEABILITY TRANSITIONApoptosisImmunologybiology.proteinNeuroscienceCell death and differentiation
researchProduct

Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use…

2013

This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in…

MAPK/ERK pathwayHealth Toxicology and MutagenesisNF-KAPPA-BReceptors Cytoplasmic and NuclearReview ArticlePharmacologyToxicologyToxicogeneticsNon-parenchymal cells0302 clinical medicineInduced pluripotent stem cellANION-TRANSPORTING POLYPEPTIDECONSTITUTIVE ANDROSTANE RECEPTOR0303 health sciencesGeneral Medicine3. Good healthCell biologymedicine.anatomical_structureLiver030220 oncology & carcinogenesisHepatocyte[SDV.TOX]Life Sciences [q-bio]/ToxicologyInactivation MetabolicClearanceDILIStem cellPLURIPOTENT STEM-CELLSFARNESOID-X-RECEPTORSignal TransductionMechanisms of gene regulationARYL-HYDROCARBON RECEPTORCell signalingPharmacology and ToxicologyHEPATIC STELLATE CELLSBiology03 medical and health sciencesOrgan Culture TechniquesIn vivoCulture TechniquesToxicity TestsmedicineMathematical modeling.AnimalsHumansLiver X receptorDRUG-DRUG INTERACTIONS030304 developmental biologyCryopreservation[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation3D ModelsCoculture TechniquesHigh-Throughput Screening AssaysSALT EXPORT PUMPGene Expression RegulationHepatic stellate cellHepatocytes[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologyPRIMARY RAT HEPATOCYTESMathematical modeling
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct