0000000001213629

AUTHOR

Lorenzo Galluzzi

showing 10 related works from this author

Cardiac Glycosides Exert Anticancer Effects by Inducing Immunogenic Cell Death

2012

Some successful chemotherapeutics, notably anthracyclines and oxaliplatin, induce a type of cell stress and death that is immunogenic, hence converting the patient's dying cancer cells into a vaccine that stimulates antitumor immune responses. By means of a fluorescence microscopy platform that allows for the automated detection of the biochemical hallmarks of such a peculiar cell death modality, we identified cardiac glycosides (CGs) as exceptionally efficient inducers of immunogenic cell death, an effect that was associated with the in- hibition of the plasma membrane Na + - and K + -dependent adenosine triphosphatase (Na + /K + -ATPase). CGs ex- acerbated the antineoplastic effects of DN…

Programmed cell deathDigoxinOrganoplatinum Compoundsmedicine.medical_treatment[SDV]Life Sciences [q-bio]Antineoplastic AgentsBiosensing TechniquesBiologyPharmacologyCardiac Glycosides03 medical and health sciencesMice0302 clinical medicineImmune systemCell Line TumorNeoplasmsmedicineAnimalsHumansAnthracyclinesComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesChemotherapyGeneral Medicinemedicine.disease3. Good healthOxaliplatinOxaliplatinCell culture030220 oncology & carcinogenesisHepatocellular carcinomaCancer cellImmunogenic cell deathmedicine.drug
researchProduct

Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes

2009

Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guid…

MESH: Cell DeathcytofluorometryMESH : Microscopy Fluorescenceved/biology.organism_classification_rank.speciesCellMESH: Flow CytometryMESH: Microscopy FluorescenceApoptosisfluorescence microscopyMESH: Eukaryotic CellsAnnexin Vnecrosis0302 clinical medicineEukaryotic Cells/cytologyMitochondrial membrane permeabilizationScanningMESH : ImmunoblottingGeneticsApoptosis; Cell Death; Eukaryotic Cells/cytology; Flow Cytometry; Guidelines as Topic; Humans; Immunoblotting; Microscopy Electron Scanning; Microscopy Fluorescence; Spectrometry Fluorescence0303 health sciencesMicroscopyMESH : Spectrometry FluorescenceMESH: ImmunoblottingCell DeathMESH: Guidelines as Topic//purl.org/becyt/ford/3.1 [https]Bioquímica y Biología MolecularFlow Cytometry3. Good healthTunelMedicina Básicamedicine.anatomical_structureEukaryotic Cellscaspases030220 oncology & carcinogenesis//purl.org/becyt/ford/3 [https]MESH: Spectrometry FluorescenceMESH : Microscopy Electron ScanningProgrammed cell deathautophagyCIENCIAS MÉDICAS Y DE LA SALUDMESH: Microscopy Electron ScanningMESH : Flow CytometrycaspaseImmunoblottingGuidelines as TopicComputational biologyBiologyElectronFluorescenceArticle03 medical and health sciencesSettore MED/04 - PATOLOGIA GENERALEmedicine[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyModel organismddc:612mitotic catastropheMolecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH : Guidelines as Topic030304 developmental biologycell death; Apoptosis; caspase; autophagy; Oxidative stress; fluorescence microscopyMESH: Humansved/biologySpectrometryInterpretation (philosophy)MESH: ApoptosisMESH : Eukaryotic CellsMESH : HumansApoptosis; Eukaryotic Cells; Flow Cytometry; Guidelines as Topic; Humans; Immunoblotting; Microscopy Electron Scanning; Microscopy Fluorescence; Spectrometry Fluorescence; Cell Death; Molecular Biology; Cell Biologyimmunofluorescence microscopyCell BiologySpectrometry FluorescenceMicroscopy FluorescenceOxidative stressMESH : Cell DeathCancer cellMicroscopy Electron ScanningMESH : Apoptosis
researchProduct

Trial Watch: Adoptively transferred cells for anticancer immunotherapy

2017

IF 7.719; International audience; Immunotherapies aimed at strengthening immune effector responses against malignant cells are growing at exponential rates. Alongside, the impressive benefits obtained by patients with advanced melanoma who received adoptively transferred tumor-infiltrating lymphocytes (TILs) have encouraged the scientific community to pursue adoptive cell transfer (ACT)-based immunotherapy. ACT involves autologous or allogenic effector lymphocytes that are generally obtained from the peripheral blood or resected tumors, expanded and activated ex vivo, and administered to lymphodepleted patients. ACT may be optionally associated with chemo- and/or immunotherapeutics, with th…

lcsh:Immunologic diseases. Allergy0301 basic medicinePD-L1Adoptive cell transferBreakthrough therapymedicine.medical_treatmentImmunology[SDV.CAN]Life Sciences [q-bio]/CancerReviewBiologycytotoxic T lymphocytelcsh:RC254-282CD19[ SDV.CAN ] Life Sciences [q-bio]/Cancer03 medical and health sciences0302 clinical medicineAntigenPD-L1PD-1medicineImmunology and AllergyCytotoxic T cellNK cellchimeric antigen receptorImmunotherapylcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensChimeric antigen receptor3. Good healthimmune checkpoint blockers030104 developmental biologyOncology030220 oncology & carcinogenesisImmunologybiology.proteinlcsh:RC581-607
researchProduct

Classification of current anticancer immunotherapies.

2014

© 2014. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

immunostimulatory cytokinesmedicine.medical_treatmentReviewBioinformaticsDNA-based vaccinesEfficacy0302 clinical medicineCancer immunotherapyNeoplasmspeptide-based vaccines0303 health sciencesPatología//purl.org/becyt/ford/3.1 [https]CANCER3. Good healthMedicina BásicaOncologycheckpoint blockers030220 oncology & carcinogenesisQR180//purl.org/becyt/ford/3 [https]ImmunotherapyCIENCIAS MÉDICAS Y DE LA SALUDmedicine.drug_classInmunologíaadoptive cell transfer; checkpoint blockers; dendritic cell-based interventions; DNA-based vaccines; immunostimulatory cytokines; peptide-based vaccines; oncolytic viruses; Toll-like receptor agonistsMonoclonal antibodydendritic cell-based interventionsToll-like receptor agonistsRC025403 medical and health sciencesImmune systemAntigen[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologymedicineAnimalsHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biologyadoptive cell transfer030304 developmental biologyIMMUNOTHERAPIESbusiness.industryCancerImmunotherapymedicine.diseaseR1Oncolytic virusoncolytic virusesImmunologybusinessOncotarget
researchProduct

Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice

2011

Antineoplastic chemotherapies are particularly efficient when they elicit immunogenic cell death, thus provoking an anticancer immune response. Here we demonstrate that autophagy, which is often disabled in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity. In response to chemotherapy, autophagy-competent, but not autophagy-deficient, cancers attracted dendritic cells and T lymphocytes into the tumor bed. Suppression of autophagy inhibited the release of adenosine triphosphate (ATP) from dying tumor cells. Conversely, inhibition of extracellular ATP-degrading enzymes increased pericellular ATP in autophagy-deficient tumors, reestablished the recr…

Programmed cell deathcells cancer immunogenicity calreticulin exposure hmgb1Antineoplastic AgentsBiologyimmunogenicityNOMicechemistry.chemical_compoundAdenosine TriphosphateImmune systemCell Line TumorNeoplasmsAutophagyExtracellularAnimalsHumanscancerMice Inbred BALB CMultidisciplinaryCell DeathImmunogenicityAutophagyDendritic CellsMice Inbred C57BLhmgb1chemistryCell cultureCancer researchImmunogenic cell deathcellsMitoxantroneCalreticulinAdenosine triphosphatecalreticulin exposure
researchProduct

Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

2015

Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ?accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. "Regulated cell death" (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to…

Biochemical Manifestations of Cell DeathISCHEMIA-REPERFUSION INJURYApoptosisReviewTransduction (genetics)0302 clinical medicineCASPASE INHIBITION SWITCHESAnimals; Humans; Terminology as Topic; Apoptosis; Signal Transduction610 Medicine & healthCaspaseTUMOR-NECROSIS-FACTOR0303 health sciencesSettore BIO/17biologySettore BIO/11NeurodegenerationSettore BIO/13APOPTOSIS3. Good healthMedicina Básicacell death030220 oncology & carcinogenesiscell death; Morphologic Aspects of Cell Death; Biochemical Manifestations of Cell DeathSignal transductionDOMAIN-LIKE PROTEINIntracellularHumanSignal TransductionNecroptosiCYTOCHROME-C RELEASEOUTER-MEMBRANE PERMEABILIZATIONProgrammed cell deathCIENCIAS MÉDICAS Y DE LA SALUDSettore BIO/06Inmunología610 Medicine & healthCELL DEATHNOQ-VD-OPH03 medical and health sciencesSettore MED/04 - PATOLOGIA GENERALEddc:570Terminology as TopicAPOPTOSIS-INDUCING FACTORMIXED LINEAGE KINASEmedicineAnimalsHumansAnimals; Humans; Terminology as Topic; Apoptosis; Signal Transduction; Molecular Biology; Cell BiologyMorphologic Aspects of Cell DeathSettore BIO/10Molecular Biology030304 developmental biologyAnimalCell growthApoptosiBiology and Life SciencesCell Biologymedicine.diseaseMITOCHONDRIAL PERMEABILITY TRANSITIONApoptosisImmunologybiology.proteinNeuroscienceCell death and differentiation
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

2016

Seuls les 100 premiers auteurs dont les auteurs INRA ont été entrés dans la notice. La liste complète des auteurs et de leurs affiliations est accessible sur la publication.; International audience; In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues…

[SDV]Life Sciences [q-bio]autophagosomeReview Articleddc:616.07stressstreLC3MESH: AnimalsSettore MED/49 - Scienze Tecniche Dietetiche ApplicateSettore BIO/06 - Anatomia Comparata E Citologiachaperone-mediated autophagyComputingMilieux_MISCELLANEOUSSettore BIO/11Pharmacology. TherapySettore BIO/13standards [Biological Assay]autolysosomeMESH: Autophagy*/physiologylysosomemethods [Biological Assay]Biological AssaySettore BIO/17 - ISTOLOGIAErratumHumanBiochemistry & Molecular BiologySettore BIO/06physiology [Autophagy]Chaperonemediated autophagy[SDV.BC]Life Sciences [q-bio]/Cellular BiologyNOautophagy guidelines molecular biology ultrastructureautolysosome; autophagosome; chaperone-mediated autophagy; flux; LC3; lysosome; macroautophagy; phagophore; stress; vacuoleMESH: Biological Assay/methodsMESH: Computer Simulationddc:570Autolysosome Autophagosome Chaperonemediated autophagy Flux LC3 Lysosome Macroautophagy Phagophore Stress VacuoleAutophagyAnimalsHumansComputer SimulationSettore BIO/10ddc:612BiologyphagophoreMESH: HumansvacuoleAnimalLC3; autolysosome; autophagosome; chaperone-mediated autophagy; flux; lysosome; macroautophagy; phagophore; stress; vacuole; Animals; Biological Assay; Computer Simulation; Humans; Autophagy0601 Biochemistry And Cell BiologyfluxmacroautophagyMESH: Biological Assay/standards*Human medicineLC3; autolysosome; autophagosome; chaperone-mediated autophagy; flux; lysosome; macroautophagy; phagophore; stress; vacuole
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct

Erratum

2016

Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; Arozena, AA; Adachi, H; Adams, CM; Adams, PD; Adeli, K; Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghiso, J; Airoldi, EM; Ait-Si-Ali, S; Akematsu, T; Akporiaye, ET; Al-Rubeai, M; Albaiceta, GM; Albanese, C; Albani, D; Albert, ML; Aldudo, J; Algul, H; Alirezaei, M; Alloza, I; Almasan, A; Almonte-Beceril, M; Alnemri, ES; Alonso, C; Altan-Bonnet, N; Altieri, DC; Alvarez, S; Alvarez-Erviti, L; Alves, S; Amadoro, G; Amano, A; Amantini, C; Ambrosio, S; Amelio, I; Amer, AO; Amessou, M; Amon, A; An, Z; Anania, FA; Andersen, SU; Andley, UP; Andreadi, CK; Andrieu-Ab…

0301 basic medicineSettore BIO/06biologyCell Biology[SDV.BC]Life Sciences [q-bio]/Cellular Biologybiology.organism_classificationCell biologyInterpretation (model theory)03 medical and health sciencesArama030104 developmental biologyMolecular BiologyHumanitiesComputingMilieux_MISCELLANEOUS
researchProduct