0000000001214564

AUTHOR

Viviana Moresi

showing 5 related works from this author

Aerobic Exercise and Pharmacological Treatments Counteract Cachexia by Modulating Autophagy in Colon Cancer

2016

Recent studies have correlated physical activity with a better prognosis in cachectic patients, although the underlying mechanisms are not yet understood. In order to identify the pathways involved in the physical activity-mediated rescue of skeletal muscle mass and function, we investigated the effects of voluntary exercise on cachexia in colon carcinoma (C26)-bearing mice. Voluntary exercise prevented loss of muscle mass and function, ultimately increasing survival of C26-bearing mice. We found that the autophagic flux is overloaded in skeletal muscle of both colon carcinoma murine models and patients, but not in running C26-bearing mice, thus suggesting that exercise may release the auto…

0301 basic medicineCachexiaColorectal cancerMuscle Fibers SkeletalMicevoluntary physical activityChloroquineMice Inbred BALB CMultidisciplinaryMuscle WeaknessMyogenesis3. Good healthmedicine.anatomical_structureColonic NeoplasmsFemalecancer cachexiamedicine.drugmedicine.medical_specialty[SDV.CAN]Life Sciences [q-bio]/Cancerautophagic fluxBiologyArticleCachexia03 medical and health sciencesAtrophyInternal medicineCell Line TumorPhysical Conditioning AnimalmedicineAutophagyAerobic exerciseAnimalsHumansMuscle SkeletalSirolimusrapamycinAutophagyAutophagosomesSkeletal musclemuscle wasting[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyRibonucleotidesmedicine.diseaseAminoimidazole CarboxamideSurvival Analysisexercise mimetics030104 developmental biologyEndocrinology5-amino-1-beta-D-ribofuranosyl-imidazole-4-carboxamide (AICAR)LysosomesNeoplasm Transplantationmuscle wasting; cancer cachexia; voluntary physical activity; exercise mimetics; 5-amino-1-beta-D-ribofuranosyl-imidazole-4-carboxamide (AICAR); rapamycin; autophagic flux
researchProduct

Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α…

2016

AbstractHeat shock protein 60 (Hsp60) is a chaperone localizing in skeletal muscle mitochondria, whose role is poorly understood. In the present study, the levels of Hsp60 in fibres of the entire posterior group of hindlimb muscles (gastrocnemius, soleus and plantaris) were evaluated in mice after completing a 6-week endurance training program. The correlation between Hsp60 levels and the expression of four isoforms of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) were investigated only in soleus. Short-term overexpression of hsp60, achieved by in vitro plasmid transfection, was then performed to determine whether this chaperone could have a role in the activa…

0301 basic medicineMaleTime FactorsPPARgammaPeroxisome proliferator-activated receptorExosomesMiceendurance trainingMyocytechemistry.chemical_classificationMultidisciplinarytrainingbiologyHsp60Mitochondriamedicine.anatomical_structureMuscle Fibers Slow-TwitchMuscle Fibers Fast-TwitchHsp60; skeletal muscle; training; PPARgamma; PGC1αHSP60[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Oxidation-Reductionmedicine.medical_specialtyanimal structureschemical and pharmacologic phenomenacomplex mixturescachexiaArticleCell Line03 medical and health sciencesEndurance trainingHeat shock proteinInternal medicinePhysical Conditioning AnimalPGC1αCoactivatormedicineAnimals[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]skeletal muscleMuscle SkeletalSettore BIO/16 - Anatomia UmanafungiSkeletal muscleChaperonin 60030104 developmental biologyEndocrinologychemistryGene Expression RegulationChaperone (protein)biology.proteinPhysical EnduranceBiomarkersTranscription FactorsScientific Reports
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct

Autophagic flux restoration by exercise or pharmacological treatment counteracts cancer cachexia

2014

cachexia exercise AICAR.
researchProduct