0000000001215421

AUTHOR

Han Wang

showing 11 related works from this author

Thickness dependence of anomalous Hall conductivity in L10-FePt thin film

2019

L10 ordered alloys are ideal models for studying the anomalous Hall effect (AHE), which can be used to distinguish the origin from intrinsic (from band structure) or from extrinsic effects (from impurity scatterings). In the bulk limit of L10 ordered FePt films, the AHE is considered to be dominated by the intrinsic contribution, which mainly comes from the strong spin-orbit interaction (SOI) of Pt atoms and exchange-splitting of Fe atoms. The study of anomalous Hall conductivity (AHC) of L10-FePt thin films is of particular interest for its application in spintronic devices. In order to reduce the effects of defects such as grain boundaries, we chose SrTiO3 as the substrate which has a ver…

Materials scienceAcoustics and UltrasonicsPhonon scatteringCondensed matter physicsSpintronics02 engineering and technologySpin–orbit interaction021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHall effect0103 physical sciencesGrain boundaryBerry connection and curvatureThin film010306 general physics0210 nano-technologyElectronic band structureJournal of Physics D: Applied Physics
researchProduct

Volume IV The DUNE far detector single-phase technology

2020

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

Technology530 Physicsmedia_common.quotation_subjectNeutrino oscillations liquid Argon TPC DUNE technical design report single phase LArTPCElectronsFREE-ELECTRONS01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingStandard Model03 medical and health sciencesneutrino0302 clinical medicineLIQUID ARGON0103 physical sciencesGrand Unified TheoryHigh Energy PhysicsAerospace engineeringInstrumentationInstruments & InstrumentationMathematical Physicsmedia_commonPhysicsScience & Technology02 Physical Sciences010308 nuclear & particles physicsbusiness.industryDetectorLıquıd ArgonfreeNuclear & Particles PhysicsSymmetry (physics)UniverseLong baseline neutrino experiment CP violationAntimatterNeutrinobusinessEvent (particle physics)
researchProduct

Electrospun TiO2 embedded nanofibers for photocatalytic applications

2019

The development of photocatalysts with low cost, high reactivity and easy recovery provides great potentials for environmental remediation. In this study, polyacrylonitrile (PAN) nanofibers containing titanium dioxide ([Formula: see text]) nanoparticles were successfully fabricated using a facile electrospinning technique. The effects of [Formula: see text] content, PAN concentration and thermal treatment on the adsorption and photocatalysis properties of [Formula: see text] nanofibers have been investigated. The results indicate that the embedded [Formula: see text] nanofibers possess the property to effectively decompose rhodamine B (RhB) under simulated sunlight irradiation. The enhance…

Materials scienceKinetic modelEnvironmental remediationTio2 nanoparticlesPolyacrylonitrileStatistical and Nonlinear Physics02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectrospinning0104 chemical scienceschemistry.chemical_compoundchemistryChemical engineeringNanofiberPhotocatalysisReactivity (chemistry)0210 nano-technologyInternational Journal of Modern Physics B
researchProduct

Electrical switching of perpendicular magnetization in a single ferromagnetic layer

2020

We report on the efficient spin-orbit torque (SOT) switching in a single ferromagnetic layer induced by a new type of inversion asymmetry, the composition gradient. The SOT of 6- to 60-nm epitaxial FePt thin films with a $L{1}_{0}$ phase is investigated. The magnetization of the FePt single layer can be reversibly switched by applying electrical current with a moderate current density. Different from previously reported SOTs which either decreases with or does not change with the film thickness, the SOT in FePt increases with the film thickness. We found the SOT in FePt can be attributed to the composition gradient along the film normal direction. A linear correlation between the SOT and th…

Materials scienceCondensed matter physicsSpintronics02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy01 natural sciencesMagnetizationFerromagnetismPhase (matter)0103 physical sciencesThin film010306 general physics0210 nano-technologyLayer (electronics)Current densityPhysical Review B
researchProduct

Volume I. Introduction to DUNE

2020

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

detector: technologydeep underground detector [neutrino]530 PhysicsPhysics::Instrumentation and DetectorsData managementmedia_common.quotation_subjectfar detector610Long baseline neutrino experiment CP violation01 natural sciences030218 nuclear medicine & medical imagingNeutrino oscillations. Neutrino Detectors. CP violation. Matter stabilitydesign [detector]03 medical and health sciencesneutrinoneutrino: deep underground detector0302 clinical medicinenear detector0103 physical sciencesDeep Underground Neutrino Experimentddc:610Neutrino oscillationInstrumentationdetector: designMathematical Physicsactivity reportmedia_common010308 nuclear & particles physicsbusiness.industryNeutrino oscillations. Neutrino Detectors. CP violation. Matter stability.DetectorVolume (computing)Modular designtime projection chamber: liquid argonUniversetechnology [detector]liquid argon [time projection chamber]Systems engineeringHigh Energy Physics::ExperimentNeutrino oscillations DUNE technical design report executive summary detector technologiesdata managementNeutrinobusiness
researchProduct

5th International Symposium on Focused Ultrasound

2016

Introduction Breast fibroadenomata (FAD) are benign lesions which occur in about 10 % of all women. Diagnosis is made by triple assessment (physical examination, imaging and/or histopathology/cytology). For a definitive diagnosis of FAD, the treatment is conservative unless the patient is symptomatic. For symptomatic patients, the lumps can be surgically excised or removed interventionally by vacuum-assisted mammotomy (VAM). Ablative techniques like high-intensity focused ultrasound (HIFU), cryo-ablation and laser ablation have also been used for the treatment of FAD, providing a minimally invasive treatment without scarring or poor cosmesis. This review summarises current trials using mini…

lcsh:Medical physics. Medical radiology. Nuclear medicineFibroadenomataCryo-ablationHigh-intensity focused ultrasoundAblative techniqueslcsh:R895-920ReviewMeeting AbstractsLaser ablationJournal of Therapeutic Ultrasound
researchProduct

$^{222}$Rn emanation measurements for the XENON1T experiment

2021

The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $\mu$Bq/kg in 3.2 t of xenon. The knowledge of the distribut…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Radon emanationFOS: Physical scienceschemistry.chemical_element01 natural sciencesNOHigh Energy Physics - Experimentradon: nuclideHigh Energy Physics - Experiment (hep-ex)XENONXenon222 RnPE2_2PE2_10103 physical sciencesActivity concentration[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matter[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsEngineering (miscellaneous)background: radioactivityPhysicsradon: admixture010308 nuclear & particles physicsdetector: surfacescreeningInstrumentation and Detectors (physics.ins-det)chemistryXenon Dark matter 222 Rn radioactivityDark Matter Radon emanation XENON Direct Dark MatterDirect Dark MatterradioactivityAtomic physics
researchProduct

Projected WIMP sensitivity of the XENONnT dark matter experiment

2020

XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage…

WIMP nucleon: scatteringdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsHadronDark matterFOS: Physical sciencesElementary particledark matter: direct detection01 natural sciencesWIMP: dark matterHigh Energy Physics - ExperimentNONuclear physicsHigh Energy Physics - Experiment (hep-ex)XENONPE2_2WIMPPE2_1electron: recoil0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPE2_4Dark matter experimentComputingMilieux_MISCELLANEOUSactivity reportnucleus: recoilPhysicsxenon: liquid010308 nuclear & particles physicsbackgroundAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Dark matter experiments dark matter simulationssensitivityBaryonDark matter experimentsDark matter simulationsWeakly interacting massive particlesDark matter experiments; Dark matter simulationsNucleon[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct

Volume III. DUNE far detector technical coordination

2020

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

Technology530 PhysicsPhysics::Instrumentation and Detectorsmedia_common.quotation_subjectContext (language use)01 natural sciences09 Engineering030218 nuclear medicine & medical imagingneutrino03 medical and health sciences0302 clinical medicine0103 physical sciencesGrand Unified TheoryDeep Underground Neutrino ExperimentHigh Energy PhysicsInstruments & InstrumentationNeutrino oscillations liquid Argon TPC technical design report technical coordinationInstrumentationMathematical Physicsmedia_commonScience & Technology02 Physical Sciences010308 nuclear & particles physicsDetectorVolume (computing)530 PhysikNuclear & Particles PhysicsUniverseSystems engineeringHigh Energy Physics::ExperimentState (computer science)NeutrinoLong baseline neutrino experiment CP violationJournal of Instrumentation
researchProduct