Application of the group method of data handling (GMDH) approach for landslide susceptibility zonation using readily available spatial covariates
Abstract Landslide susceptibility (LS) mapping is an essential tool for landslide risk assessment. This study aimed to provide a new approach with better performance for landslide mapping and adopting readily available variables. In addition, it investigates the capability of a state-of-the-art model developed using the group method of data handling (GMDH) to spatially model LS. Furthermore, hybridized models of GMDH were developed using different metaheuristic algorithms. The study area was the Bonghwa region of South Korea, for which an accurate landslide inventory dataset is available. We considered a total of 13 spatial covariates (altitude, slope, aspect, topographic wetness index, val…