0000000001216743

AUTHOR

M. B. Gongalsky

Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications

International audience; An ultrashort laser-assisted method for fast production of concentrated aqueous solutions of ultrapure Si-based colloidal nanoparticles is reported. The method profits from the 3D geometry of femtosecond laser ablation of water-dispersed microscale colloids, prepared preliminarily by the mechanical milling of a Si wafer, in order to avoid strong concentration gradients in the ablated material and provide similar conditions of nanocluster growth within a relatively large laser caustics volume. We demonstrate the possibility for the fast synthesis of non-aggregated, low-size-dispersed, crystalline Si-based nanoparticles, whose size and surface oxidation can be controll…

research product

Silicon Nanocrystals Produced by Nanosecond Laser Ablation in an Organic Liquid

Small (3−5 nm in diameter following HRTEM images) Si nanocrystals were produced in a two-stage process including (1) nanosecond laser ablation of a Si target in an organic liquid (chloroform) that results in formation of big composite polycrystalline particles (about 20−100 nm average diameter) and (2) ultrasonic post-treatment of Si nanoparticles in the presence of HF. The post-treatment is responsible for disintegration of the composite Si particles, release of small individual nanocrystals, and reduction of their size due to HF-induced etching of Si oxide. The downshift and broadening of the ∼520 cm−1 Raman phonon band of the small Si nanocrystals with respect to the bulk Si Raman band i…

research product