0000000001217041

AUTHOR

W. Carithers

showing 3 related works from this author

The IceCube data acquisition system: Signal capture, digitization, and timestamping

2008

IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, func…

AMANDANuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstronomyFOS: Physical sciencesAstrophysicsNeutrino telescopeSignalHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryNuclear physicsHigh Energy Physics - Experiment (hep-ex)IcecubeData acquisitionSignal digitizationddc:530Nuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationPhysicsbusiness.industryAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAMANDA; Icecube; Neutrino telescope; Signal digitizationTimestampingInstrumentation and Detectors (physics.ins-det)Analog signalTransmission (telecommunications)Systems designTimestampbusinessComputer hardware
researchProduct

IceCube: A multipurpose neutrino telescope

2008

IceCube is a new high-energy neutrino telescope which will be coming online in the near future. IceCube will be capable of measuring fluxes of all three flavors of neutrino, and its peak neutrino energy sensitivity will be in the TeV–PeV range. Here, after a brief description of the detector, we describe its anticipated performance with a selection of physics topics: supernovae, extraterrestrial diffuse and point sources of neutrinos, gamma-ray bursts, neutrinos from WIMP annihilation, and cosmic ray composition.

Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoGeneral Physics and AstronomyAstrophysics7. Clean energy01 natural sciencesWIMP0103 physical sciencesNeutrinos010306 general physicsCosmic rays; Neutrinos; WIMPsCosmic raysPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsAstronomySolar neutrino problemWIMPsCosmic neutrino backgroundNeutrino detectorMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomy
researchProduct

Direct measurement of the W boson width

2009

We present a direct measurement of the width of the W boson using the shape of the transverse mass distribution of W->enu candidates selected in 1 fb-1 of data collected with the D0 detector at the Fermilab Tevatron collider in ppbar collisions at sqrt{s}=1.96 TeV. We use the same methods and data sample that were used for our recently published W boson mass measurement, except for the modeling of the recoil, which is done with a new method based on a recoil library. Our result, 2.028 +- 0.072 GeV, is in agreement with the predictions of the standard model.

Particle physicsTevatronGeneral Physics and AstronomyFOS: Physical sciences= 1.8 TEVElementary particle01 natural sciencesHigh Energy Physics - ExperimentStandard Modellaw.inventionNuclear physicsCOLLIDERParticle decayHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)RecoilRATIOPBARP COLLISIONSlaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONSFermilabCollider010306 general physicsNuclear ExperimentBosonPhysics010308 nuclear & particles physicsComputer Science::Information Retrieval14.70.Fm 13.38.Be 13.85.QkTransverse mass= 1.8 TEV; PBARP COLLISIONS; RADIATIVE-CORRECTIONS; RATIO; COLLIDER; DECAYHigh Energy Physics::ExperimentCollider Detector at FermilabDECAY
researchProduct