0000000001218889
AUTHOR
J. Marcos Salazar
Adsorption and desorption surface dynamics of gaseous adsorbate on silicate-1 by molecular dynamics simulation
The dynamics of adsorption and desorption of gaseous molecules on the external surface of a crystal and a membrane of zeolite silicate-1 is investigated by molecular dynamics simulation. The gases ...
Modelling Dislocation Patterns by Molecular Dynamics
Adsorption of CO and N 2 molecules at the surface of solid water. A grand canonical Monte Carlo study
International audience; The adsorption of carbon monoxide and nitrogen molecules at the surface of four forms of solid water is investigated by means of grand canonical Monte Carlo simulations. The trapping ability of crystalline Ih and low-density amorphous ices, along with clathrate hy-drates of structures I and II, are compared at temperatures relevant for astrophysics. It is shown that, when considering a gas phase that contains mixtures of carbon monoxide and nitrogen, the trapping of carbon monoxide is favored with respect to that of nitrogen at the surface of all solids, irrespective of the temperature. The results of the calculations also indicate that some amounts of molecules can …
A Grand Canonical Monte Carlo Study of the N2, CO, and Mixed N2–CO Clathrate Hydrates
In this paper we report the use of Grand Canonical Monte Carlo (GCMC) simulations to characterize the competitive trapping of CO and N2 molecules into clathrates, for various gas compositions in the temperature range from 50 to 150 K. The simulations evidence a preferential trapping of CO with respect to N2. This leads to the formation of clathrates that are preferentially filled with CO at equilibrium, irrespective of the composition of the gas phase, the fugacity, and the temperature. Moreover, the results of the simulations show that the small cages of the clathrate structure are always filled first, independent of either the guest structure or the temperature. This issue has been associ…
Determination of the stress distribution at the interface metal-oxide: Numerical and theoretical considerations
In this paper we give a brief presentation of the approaches we have recently developed on the oxidation of metals. Firstly, we present an analytical model based on non-equilibrium thermodynamics to describe the reaction kinetics present during the oxidation of a metal. Secondly, we present the molecular dynamics results obtained with a code specially tailored to study the oxidation and growth of an oxide film of aluminium. Our simulations present an excellent agreement with experimental results.
Dynamic Self-assembly of Non-Brownian Spheres.
International audience; Granular self-assembly of confined non-Brownian spheres under gravity is studied by Molecular Dynamics simulations. Starting from a disordered phase, dry or cohesive spheres organize, by vibrational an-nealing into BCT or FCC structures, respectively. During the self-assembling process, isothermal and isodense points are observed. The existence of such points indicates that both granular temperature and packing fraction undergo an inversion process. Around the isothermal point, a sudden growth of beads having the maximum coordination number takes place. We show by a density fluctuation analysis that a transition form a disordered phase to a crystalline structure may …
Computer Simulations on Dislocation Patterning
A Methodology to Deduce the Microstructural Spatial Deformation of Polycrystalline Structures: Application to the Alloy 600
Studying the corrosion of the alloy 600, under water pressure, is of high importance to understand the ageing process of pressurized water reactors. Today, the impact of the oxide growth on the mechanical properties of nickel alloys is a challenge. The surface analysis and the quantification of the local deformation are key factors to deduce the surface damage of the substrate produced by corrosion. Here, we introduce a new methodology to determine the deformation distribution of the alloy 600 by using polycrystalline samples. The method is based on nanopads disposed on the surface samples, which allow a mapping, at the microscopic scale, of the spatial deformation. We applied to the sample…