0000000001219416
AUTHOR
Alejandro Núñez-lópez
Correction: Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films
Correction for ‘Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films’ by Víctor Rubio-Giménez et al., Chem. Sci., 2019, DOI: 10.1039/c8sc04935a.
Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films† †Electronic supplementary information (ESI) available: Materials and methods, supplementary figures and tables. See DOI: 10.1039/c8sc04935a
Film thickness and microstructure critically affect the spin crossover transition of a 2D coordination polymer.
Direct Visualization of Pyrrole Reactivity upon Confinement within a Cyclodextrin Metal–Organic Framework
Metal–organic frameworks can be used as porous templates to exert control over polymerization reactions. Shown here are the possibilities offered by these crystalline, porous nanoreactors to capture highly-reactive intermediates for a better understanding of the mechanism of polymerization reactions. By using a cyclodextrin framework the polymerization of pyrrole is restricted, capturing the formation of terpyrrole cationic intermediates. Single-crystal X-ray diffraction is used to provide definite information on the supramolecular interactions that induce the formation and stabilization of a conductive array of cationic complexes.
Direct visualization of pyrrole reactivity by confined oxidation in a Cyclodextrin Metal‐Organic Framework
Metal-organic frameworks can be used as porous templates to exert control over polymerization reactions. Shown here are the possibilities offered by these crystalline, porous nanoreactors to capture highly‐reactive intermediates for a better understanding of the mechanism of polymerization reactions. By using a cyclodextrin framework the polymerization of pyrrole is restricted, capturing the formation of terpyrrole cationic intermediates. Single‐crystal X‐ray diffraction is used to provide definite information on the supramolecular interactions that induce the formation and stabilization of a conductive array of cationic complexes.