A Method Based on Multi-source Feature Detection for Counting People in Crowded Areas
We propose a crowd counting method for multisource feature fusion. Image features are extracted from multiple sources, and the population is estimated by image feature extraction and texture feature analysis, along with for crowd image edge detection. We count people in high-density still images. For instance, in the city’s squares, sports fields, subway stations, etc. Our approach uses a still image taken by a camera on a drone to appraise the count in the population density image, using a kind of sources of information: HOG, LBP, CANNY. We furnish separate estimates of counts and other statistical measurements through several types of sources. Support vector machine SVM, classification an…