0000000001219813
AUTHOR
Hamid Khoshbakht
High-precision studies of domain-wall properties in the 2D Gaussian Ising spin glass
In two dimensions, short-range spin glasses order only at zero temperature, where efficient combinatorial optimization techniques can be used to study these systems with high precision. The use of large system sizes and high statistics in disorder averages allows for reliable finite-size extrapolations to the thermodynamic limit. Here, we use a recently introduced mapping of the Ising spin-glass ground-state problem to a minimum-weight perfect matching problem on a sparse auxiliary graph to study square-lattice samples of up to 10 000 × 10 000 spins. We propose a windowing technique that allows to extend this method, that is formally restricted to planar graphs, to the case of systems with …
Domain-wall excitations in the two-dimensional Ising spin glass
The Ising spin glass in two dimensions exhibits rich behavior with subtle differences in the scaling for different coupling distributions. We use recently developed mappings to graph-theoretic problems together with highly efficient implementations of combinatorial optimization algorithms to determine exact ground states for systems on square lattices with up to $10\,000\times 10\,000$ spins. While these mappings only work for planar graphs, for example for systems with periodic boundary conditions in at most one direction, we suggest here an iterative windowing technique that allows one to determine ground states for fully periodic samples up to sizes similar to those for the open-periodic…