0000000001220397
AUTHOR
M. C. Gonzalez-garcia
Robust signatures of solar neutrino oscillation solutions
With the goal of identifying signatures that select specific neutrino oscillation parameters, we test the robustness of global oscillation solutions that fit all the available solar and reactor experimental data. We use three global analysis strategies previously applied by different authors and also determine the sensitivity of the oscillation solutions to the critical nuclear fusion cross section, S_{17}(0), for the production of 8B. The favored solutions are LMA, LOW, and VAC in order of g.o.f. The neutral current to charged current ratio for SNO is predicted to be 3.5 +- 0.6 (1 sigma), which is separated from the no-oscillation value of 1.0 by much more than the expected experimental er…
Updated determination of the solar neutrino fluxes from solar neutrino data
Journal of High Energy Physics 2016.3 (2016): 132 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)
Three-neutrino mixing after the first results from K2K and KamLAND
We analyze the impact of the data on long baseline \nu_\mu disappearance from the K2K experiment and reactor \bar\nu_e disappearance from the KamLAND experiment on the determination of the leptonic three-generation mixing parameters. Performing an up-to-date global analysis of solar, atmospheric, reactor and long baseline neutrino data in the context of three-neutrino oscillations, we determine the presently allowed ranges of masses and mixing and we consistently derive the allowed magnitude of the elements of the leptonic mixing matrix. We also quantify the maximum allowed contribution of \Delta m^2_{21} oscillations to CP-odd and CP-even observables at future long baseline experiments.
Supersymmetry with spontaneous R-parity breaking in Z0 decays: the case of an additional Z
Single production of SUSY particles in the decays of the Z0 may proceed with large rates in models with spontaneously broken R-parity. We focus on the case where there is a lepton number symmetry as part of the gauge group. In the simplest of such models there is a single additional neutral gauge boson and the strength of Rp-violating interactions is related with that of the new gauge force. We study the phenomenological implications of the model for Z0 decays, including the study of the rates for single chargino production in Z0 decays, i.e. Z0→ξ±τ±, as well as for the so-called Zen events, and find that they may be measurable at LEP. The first process, characteristics of spontaneously bro…
Bosonic quartic couplings at CERN LHC
We analyze the potential of the CERN Large Hadron Collider (LHC) to study anomalous quartic vector-boson interactions Z Z gamma gamma, Z Z Z gamma, W+ W- gamma gamma, and W+ W- Z gamma through the weak boson fusion processes q q -> q q gamma gamma and q q -> q q gamma Z(-> l+ l-) with l = electron or muon. After a careful study of the backgrounds and how to extract them from the data, we show that the process p p -> j j gamma l+ l- is potentially the most sensitive to deviations from the Standard Model, improving the sensitivity to anomalous couplings by up to a factor 10^4 (10^2) with respect to the present direct (indirect) limits.
Size of the dark side of the solar neutrino parameter space
We present an analysis of the MSW neutrino oscillation solutions of the solar neutrino problem in the framework of two-neutrino mixing in the enlarged parameter space $(\ensuremath{\Delta}{m}^{2},{\mathrm{tan}}^{2}\ensuremath{\theta})$ with $\ensuremath{\theta}\ensuremath{\in}(0,\ensuremath{\pi}/2).$ Recently, it was pointed out that the allowed region of parameters from a fit to the measured total rates can extend to values $\ensuremath{\theta}g~\ensuremath{\pi}/4$ (the so-called ``dark side'') when higher confidence levels are allowed. The purpose of this Rapid Communication is to reanalyze the problem, including all the solar neutrino data available, to discuss the dependence on the stat…
If sterile neutrinos exist, how can one determine the total solar neutrino fluxes?
The 8B solar neutrino flux inferred from a global analysis of solar neutrino experiments is within 11% (1 sigma) of the predicted standard solar model value if only active neutrinos exist, but could be as large as 1.7 times the standard prediction if sterile neutrinos exist. We show that the total 8B neutrino flux (active plus sterile neutrinos) can be determined experimentally to about 10% (1 sigma) by combining charged current measurements made with the KamLAND reactor experiment and with the SNO CC solar neutrino experiment, provided the LMA neutrino oscillation solution is correct and the simulated performance of KamLAND is valid. Including also SNO NC data, the sterile component of the…
Active-active and active-sterile neutrino oscillation solutions to the atmospheric neutrino anomaly
We perform a fit to the full data set corresponding to 33.3 kt-yr of data of the Super-Kamiokande experiment as well as to all other experiments in order to compare the two most likely solutions to the atmospheric neutrino anomaly in terms of oscillations in the $\nu_\mu \to \nu_\tau$ and $\nu_\mu \to \nu_s$ channels. Using state-of-the-art atmospheric neutrino fluxes we have determined the allowed regions of oscillation parameters for both channels. We find that the $\Delta m^2$ values for the active-sterile oscillations (both for positive and negative $\Delta m^2$) are higher than for the $\nu_\mu \to \nu_\tau$ case, and that the increased Super-Kamiokande sample slightly favours $\nu_\mu…
Phenomenology of maximal and near-maximal lepton mixing
We study the phenomenological consequences of maximal and near-maximal mixing of the electron neutrino with other ($x$=tau and/or muon) neutrinos. We describe the deviations from maximal mixing in terms of a parameter $\epsilon\equiv1-2\sin^2\theta_{ex}$ and quantify the present experimental status for $|\epsilon|<0.3$. We find that the global analysis of solar neutrino data allows maximal mixing with confidence level better than 99% for $10^{-8}$ eV$^2\lsim\Delta m^2\lsim2\times10^{-7}$ eV$^2$. In the mass ranges $\Delta m^2\gsim 1.5\times10^{-5}$ eV$^2$ and $4\times10^{-10}$ eV$^2\lsim\Delta m^2\lsim2\times10^{-7}$ eV$^2$ the full interval $|\epsilon|<0.3$ is allowed within 4$\sigma$(99.9…
Mass Varying Neutrinos in the Sun
In this work we study the phenomenological consequences of the dependence of mass varying neutrinos on the neutrino density in the Sun, which we precisely compute in each point along the neutrino trajectory. We find that a generic characteristic of these scenarios is that they establish a connection between the effective Delta m^2 in the Sun and the absolute neutrino mass scale. This does not lead to any new allowed region in the oscillation parameter space. On the contrary, due to this effect, the description of solar neutrino data worsens for large absolute mass. As a consequence a lower bound on the level of degeneracy can be derived from the combined analysis of the solar and KamLAND da…
Zenith angle distributions at Super-Kamiokande and SNO and the solution of the solar neutrino problem
We have performed a detailed study of the zenith angle dependence of the regeneration factor and distributions of events at SNO and SK for different solutions of the solar neutrino problem. In particular, we discuss oscillatory behaviour and the synchronization effect in the distribution for the LMA solution, the parametric peak for the LOW solution, etc.. Physical interpretation of the effects is given. We suggest a new binning of events which emphasizes distinctive features of zenith angle distributions for the different solutions. We also find the correlations between the integrated day-night asymmetry and the rates of events in different zenith angle bins. Study of these correlations st…
Four-neutrino oscillations and the solar neutrino problem
We perform a fit of solar neutrino data in the framework of the two four-neutrino schemes that are compatible with the results of all neutrino oscillation experiments. These schemes allow simultaneous transitions of solar nu_e's into active nu_mu's, nu_tau's and sterile nu_s. The data imply that the SMA solution is valid for any combination of nu_e->active and nu_e->sterile transitions, whereas the LMA, LOW and VO solutions disappear when nu_e->nu_s transitions are dominant.
Production mechanisms and signatures of isosinglet neutral heavy leptons in Z0 decays
Abstract Neutral Heavy Leptons (NHLs) arise in many extensions of the standard electroweak theory such as superstring inspired models. The possibility of gauge singlets NHLs is especially attractive because it gives an explanation for the observed smallness of the neutrino mass. Existing limits on the possible existence of such particles are still fairly poor. We have investigated isosinglet NHL production and decays within different models. The dominant production cross section is single production (i.e. Z 0 → N + ν or Z 0 → N + ν ) as a result of mixing with the standard doublet neutrinos. Subsequent NHL decays lead to striking signatures. Taking into account the expected luminosities and…
Measuring the deviation of the 2–3 lepton mixing from maximal with atmospheric neutrinos
The measurement of the deviation of the 2-3 leptonic mixing from maximal, D_23 = 1/2 - sin^2(theta_23), is one of the key issues for understanding the origin of the neutrino masses and mixing. In the three-neutrino context we study the dependence of various observables in the atmospheric neutrinos on D_23. We perform a global three-neutrino analysis of the atmospheric and reactor neutrino data taking into account the effects of both the oscillations driven by the "solar" parameters (Delta_m_21^2 and theta_12) and the 1-3 mixing. The departure from the one-dominant mass scale approximation results into the shift of the 2-3 mixing from maximal by Delta_sin^2(theta_23) ~ 0.04, so that D_23 ~ 0…
Four-neutrino oscillation solutions of the solar neutrino problem
We present an analysis of the neutrino oscillation solutions of the solar neutrino problem in the framework of four-neutrino mixing where a sterile neutrino is added to the three standard ones. We perform a fit to the full data set corresponding to the 825-day Super-Kamiokande data sample as well as to Chlorine, GALLEX and SAGE and Kamiokande experiments. In our analysis we use all measured total event rates as well as all Super-Kamiokande data on the zenith angle dependence and the recoil electron energy spectrum. We consider both transitions via the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism as well as oscillations in vacuum (just-so) and find the allowed solutions for different values …
Bounds on Higgs and Gauge--Boson Interactions from LEP2 Data
We derive bounds on Higgs and gauge--boson anomalous interactions using the LEP2 data on the production of three photons and photon pairs in association with hadrons. In the framework of $SU(2)_L \otimes U(1)_Y$ effective Lagrangians, we examine all dimension--six operators that lead to anomalous Higgs interactions involving $\gamma$ and $Z$. The search for Higgs boson decaying to $\gamma\gamma$ pairs allow us to obtain constrains on these anomalous couplings that are comparable with the ones originating from the analyses of $p\bar{p}$ collisions at the Tevatron. Our results also show that if the coefficients of all ``blind'' operators are assumed to have same magnitude, the indirect constr…
Coherent elastic neutrino-nucleus scattering at the European Spallation Source
The European Spallation Source (ESS), presently well on its way to completion, will soon provide the most intense neutron beams for multi-disciplinary science. Fortuitously, it will also generate the largest pulsed neutrino flux suitable for the detection of Coherent Elastic Neutrino-Nucleus Scattering (CE$\nu$NS), a process recently measured for the first time at ORNL's Spallation Neutron Source. We describe innovative detector technologies maximally able to profit from the order-of-magnitude increase in neutrino flux provided by the ESS, along with their sensitivity to a rich particle physics phenomenology accessible through high-statistics, precision CE$\nu$NS measurements.
Global three-neutrino oscillation analysis of neutrino data
A global analysis of the solar, atmospheric and reactor neutrino data is presented in terms of three-neutrino oscillations. We include the most recent solar neutrino rates of Homestake, SAGE, GALLEX and GNO, as well as the recent 1117 day Super-Kamiokande data sample, including the recoil electron energy spectrum both for day and night periods and we treat in a unified way the full parameter space for oscillations, correctly accounting for the transition from the matter enhanced (MSW) to the vacuum oscillations regime. Likewise, we include in our description conversions with $\theta_{12} > \pi/4$. For the atmospheric data we perform our analysis of the contained events and the upward-going …
Status of the CPT violating interpretations of the LSND signal
We study the status of the CPT violating neutrino mass spectrum which has been proposed to simultaneously accommodate the oscillation data from LSND, KamLAND, atmospheric and solar neutrino experiments, as well as the non-observation of anti-neutrino disappearance in short-baseline reactor experiments. We perform a three-generation analysis of the global data with the aim of elucidating the viability of this solution. We find no compatibility between the results of the oscillation analysis of LSND and all-but-LSND data sets below 3$\sigma$ CL. Furthermore, the global data without LSND show no evidence for CPT violation: the best fit point of the all-but-LSND analysis occurs very close to a …
Atmospheric neutrino observations and flavor changing interactions
Flavor changing (FC) neutrino-matter interactions can account for the zenith-angle dependent deficit of atmospheric neutrinos observed in the SuperKamiokande experiment, without directly invoking neither neutrino mass, nor mixing. We find that FC $\nu_\mu$-matter interactions provide a good fit to the observed zenith angle distributions, comparable in quality to the neutrino oscillation hypothesis. The required FC interactions arise naturally in many attractive extensions of the Standard Model.
Does the Sun Shine byppor CNO Fusion Reactions?
We show that solar neutrino experiments set an upper limit of 7.8% (7.3% including the recent KamLAND measurements) to the fraction of energy that the Sun produces via the CNO fusion cycle, which is an order of magnitude improvement upon the previous limit. New experiments are required to detect CNO neutrinos corresponding to the 1.5% of the solar luminosity that the standard solar model predicts is generated by the CNO cycle.
Leptogenesis without violation of B-L
We study the possibility of generating the observed baryon asymmetry via leptogenesis in the decay of heavy Standard Model singlet fermions which carry lepton number, in a framework without Majorana masses above the electroweak scale. Such scenario does not contain any source of total lepton number violation besides the Standard Model sphalerons, and the baryon asymmetry is generated by the interplay of lepton flavour effects and the sphaleron decoupling in the decay epoch.
Global Analysis of Solar Neutrino Oscillations Including SNO CC Measurement
For active and sterile neutrinos, we present the globally allowed solutions for two neutrino oscillations. We include the SNO CC measurement and all other relevant solar neutrino and reactor data. Five active neutrino oscillation solutions (LMA, LOW, SMA, VAC, and Just So2) are currently allowed at 3 sigma; three sterile neutrino solutions (Just So2, SMA, and VAC) are allowed at 3 sigma. The goodness of fit is satisfactory for all eight solutions. We also investigate the robustness of the allowed solutions by carrying out global analyses with and without: 1) imposing solar model constraints on the 8B neutrino flux, 2) including the Super-Kamiokande spectral energy distribution and day-night…
New results on a search for a 33.9 MeV/c2 neutral particle from π+ decay in the NOMAD experiment
We report on a direct search in NOMAD for a new 33.9 MeV/c^2 neutral particle (X) produced in pion decay in flight, pi-->mu_X followed by the decay X -->nu e^+e^-. Both decays are postulated to occur to explain the time anomaly observed by the KARMEN experiment. From the analysis of the data collected during the 1996?1998 runs with 4.1×10^19 protons on target, a single candidate event consistent with background expectations was found. The search is sensitive to a pion branching ratio BR(pi-->muX >3.7×10^-15, significantly smaller than previous experimental limits.
Seasonal dependence in the solar neutrino flux
MSW solutions of the solar neutrino problem predict a seasonal dependence of the zenith angle distribution of the event rates, due to the non-zero latitude at the Super-Kamiokande site. We calculate this seasonal dependence and compare it with the expectations in the no-oscillation case as well as just-so scenario, in the light of the latest Super-Kamiokande 708-day data. The seasonal dependence can be sizeable in the large mixing angle MSW solution and would be correlated with the day-night effect. This may be used to discriminate between MSW and just-so scenarios and should be taken into account in refined fits of the data.
Soft leptogenesis in the inverse seesaw model
We consider leptogenesis induced by soft supersymmetry breaking terms ("soft leptogenesis"), in the context of the inverse seesaw mechanism. In this model there are lepton number (L) conserving and L-violating soft supersymmetry-breaking B-terms involving the singlet sneutrinos which, together with the -- generically small-- L-violating parameter responsible of the neutrino mass, give a small mass splitting between the four singlet sneutrino states of a single generation. In combination with the trilinear soft supersymmetry breaking terms they also provide new CP violating phases needed to generate a lepton asymmetry in the singlet sneutrino decays. We obtain that in this scenario the lepto…
Constraints on additionalZ′gauge bosons from a precise measurement of theZmass
We analyze the constraints on the mass and mixing of superstring-inspired E{sub 6} {ital Z}{prime} neutral gauge boson that follow from the recent precise {ital Z} mass measurements and show that they depend very sensitively on the assumed value of the {ital W} mass and also, to a lesser extent, on the top-quark mass.
Status of the MSW solutions of the solar neutrino problem
We present an updated global analysis of two-flavor MSW solutions to the solar neutrino problem in terms of conversions of nu_e into active or sterile neutrinos. We perform a fit to the full data set corresponding to the 825-day Super-Kamiokande data sample as well as to Chlorine, GALLEX and SAGE experiments. We use all measured total event rates as well as Super-Kamiokande data on the zenith angle dependence, energy spectrum and seasonal variation of the events. For conversions into active neutrinos we find that, although the data on the total event rates favours the Small Mixing Angle (SMA) solution, once the full data set is included both SMA and Large Mixing Angle (LMA) solutions give a…
Solar Neutrinos Before and After Neutrino 2004
We compare, using a three neutrino analysis, the allowed neutrino oscillation parameters and solar neutrino fluxes determined by the experimental data available Before and After Neutrino 2004. New data available after Neutrino2004 include refined KamLAND and gallium measurements. We use six different approaches to analyzing the KamLAND data. We present detailed results using all the available neutrino and anti-neutrino data for Delta m^2_{12}, tan^2 theta_{12}, sin^2 theta_{13}, and sin^2 eta (sterile fraction). Using the same complete data sets, we also present Before and After determinations of all the solar neutrino fluxes, which are treated as free parameters, an upper limit to the lumi…
Limits on Anomalous Top Couplings from Z Pole Physics
We obtain constraints on possible anomalous interactions of the top quark with the electroweak vector bosons arising from the precision measurements at the Z pole. In the framework of $SU(2)_L \otimes U(1)_Y$ chiral Lagrangians, we examine all effective CP-conserving operators of dimension five which induce fermionic currents involving the top quark. We constrain the magnitudes of these anomalous interactions by evaluating their one-loop contributions to the Z pole physics. Our analysis shows that the operators that contribute to the LEP observables get bounds close to the theoretical expectation for their anomalous couplings. We also show that those which break the $SU(2)_C$ custodial symm…
Solar Neutrinos Before and After KamLAND
We use the recently reported KamLAND measurements on oscillations of reactor anti-neutrinos, together with the data of previously reported solar neutrino experiments, to show that: (1) the total 8B neutrino flux emitted by the Sun is 1.00(1.0 \pm 0.06) of the standard solar model (BP00) predicted flux, (2) the KamLAND measurements reduce the area of the globally allowed oscillation regions that must be explored in model fitting by six orders of magnitude in the Delta m^2-tan^2 theta plane, (3) LMA is now the unique oscillation solution to a CL of 4.7sigma, (4) maximal mixing is disfavored at 3.1 sigma, (5) active-sterile admixtures are constrained to sin^2 eta<0.13 at 1 sigma, (6) the ob…
Z physics constraints on vector leptoquarks
We analyze the constraints on vector leptoquarks coming from radiative corrections to $Z$ physics. We perform a global fitting to the LEP data including the oblique and non-universal contributions of the most general effective Lagrangian for vector leptoquarks, which exhibits the $SU(2)_L \times U(1)_Y$ gauge invariance. We show that the $Z$ physics leads to stronger bounds on second and third generation vectors leptoquarks than the ones obtained from low energy and the current collider experiments.
Status of the MSW Solutions to the Solar Neutrino Problem
In this talk we present the results of an updated global analysis of two-flavor MSW solutions to the solar neutrino problem in terms of conversions of $\nu_e$ into active or sterile neutrinos including the the full data set corresponding to the 825-day Super-Kamiokande data sample as well as to Chlorine, GALLEX and SAGE experiments.
Theory of Neutrino Masses and Mixing
In this talk I will review our present knowledge on neutrino masses and mixing trying to emphasize what has been definitively proved and what is in the process of being probed. I will also discuss the most important theoretical implications of these results: the existence of new physics, the estimate of the scale of this new physics as well as some other possible consequences such as leptogenesis origin of the baryon asymmetry.
pp→jje±μ±ννandjje±μ∓ννatO(αem6)andO(αem4αs2)for the study of the quartic electroweak gauge boson vertex at CERN LHC
We analyze the potential of the CERN Large Hadron Collider (LHC) to study the structure of quartic vector-boson interactions through the pair production of electroweak gauge bosons via weak boson fusion $qq\ensuremath{\rightarrow}qqWW$. In order to study these couplings we have performed a partonic level calculation of all processes $pp\ensuremath{\rightarrow}jj{e}^{\ifmmode\pm\else\textpm\fi{}}{\ensuremath{\mu}}^{\ifmmode\pm\else\textpm\fi{}}\ensuremath{\nu}\ensuremath{\nu}$ and $pp\ensuremath{\rightarrow}jj{e}^{\ifmmode\pm\else\textpm\fi{}}{\ensuremath{\mu}}^{\ensuremath{\mp}}\ensuremath{\nu}\ensuremath{\nu}$ at the LHC using the exact matrix elements at $\mathcal{O}({\ensuremath{\alpha}}…
Neutrino Masses and Mixing one Decade from Now
We review the status of neutrino masses and mixings in the light of the solar and atmospheric neutrino data. The result from the LSND experiment is also considered. We discuss the present knowledge and the expected sensitivity to the neutrino mixing parameters in the simplest schemes proposed to reconcile these data some of which include a light sterile neutrino in addition to the three standard ones.
Probing long-range leptonic forces with solar and reactor neutrinos
In this work we study the phenomenological consequences of the existence of long-range forces coupled to lepton flavour numbers in solar neutrino oscillations. We study electronic forces mediated by scalar, vector or tensor neutral bosons and analyze their effect on the propagation of solar neutrinos as a function of the force strength and range. Under the assumption of one mass scale dominance, we perform a global analysis of solar and KamLAND neutrino data which depends on the two standard oscillation parameters, \Delta m^2_{21} and \tan^2\theta_{12}, the force coupling constant, its range and, for the case of scalar-mediated interactions, on the neutrino mass scale as well. We find that,…
Isosinglet-neutral heavy-lepton production in Z-decays and neutrino mass
Abstract The possible existence of NHLs is often related to neutrino mass. As a result their production cross section may be correspondingly constrained by observational limits on neutrino masses. We analyze the discovery potential of isosinglet NHLs within various models taking also into account cosmological limits on relic neutrino abundances.
Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data
We perform a global fit to neutrino oscillation and coherent neutrino-nucleus scattering data, using both timing and energy information from the COHERENT experiment. The results are used to set model-independent bounds on four-fermion effective operators inducing non-standard neutral-current neutrino interactions. We quantify the allowed ranges for their Wilson coefficients, as well as the status of the LMA-D solution, for a wide class of new physics models with arbitrary ratios between the strength of the operators involving up and down quarks. Our results are presented for the COHERENT experiment alone, as well as in combination with the global data from oscillation experiments. We also q…
Anomalous quartic gauge boson couplings at hadron colliders
We analyze the potential of the Fermilab Tevatron and CERN Large Hadron Collider (LHC) to study anomalous quartic vector--boson interactions (photon photon Z Z) and (photon photon W+ W-). Working in the framework of SU(2)_L X U(1)_Y chiral Lagrangians, we study the production of photons pairs accompanied by (e+e-), (e nu), and jet pairs to impose bounds on these new couplings, taking into account the unitarity constraints. We compare our findings with the indirect limits coming from precision electroweak measurements as well as with presently available direct searches at LEPII. We show that the Tevatron Run II can provide limits on these quartic limits which are of the same order of magnitu…
Future $\nu_\tau$ Oscillation Experiments and Present Data
Our goal in this paper is to examine the discovery potential of laboratory experiments searching for the oscillation $\nu_\mu(\nu_e) \rightarrow \nu_\tau$, in the light of recent data on solar and atmospheric neutrino experiments, which we analyse together with the most restrictive results from laboratory experiments on neutrino oscillations. In order to explain simultaneously $all$ present results we use a four-neutrino framework, with an additional sterile neutrino. Our predictions are rather pessimistic for the upcoming experiments NOMAD and CHORUS, which, we find, are able to explore only a small area of the oscillation parameter space. On the other hand, the discovery potential of futu…
Atmospheric neutrino oscillations and new physics
We study the robustness of the determination of the neutrino masses and mixing from the analysis of atmospheric and K2K data under the presence of different forms of phenomenologically allowed new physics in the nu_mu--nu_tau sector. We focus on vector and tensor-like new physics interactions which allow us to treat, in a model independent way, effects due to the violation of the equivalence principle, violations of the Lorentz invariance both CPT conserving and CPT violating, non-universal couplings to a torsion field and non-standard neutrino interactions with matter. We perform a global analysis of the full atmospheric data from SKI together with long baseline K2K data in the presence of…
Conditions for statistical determination of the neutrino mass spectrum in radiative emission of neutrino pairs in atoms
The photon spectrum in macrocoherent atomic de-excitation via radiative emission of neutrino pairs (RENP) has been proposed as a sensitive probe of the neutrino mass spectrum, capable of competing with conventional neutrino experiments. In this paper we revisit this intriguing technique in order to quantify the requirements for statistical determination of some of the properties of the neutrino spectrum, in particular the neutrino mass scale and the mass ordering. Our results are sobering. We find that, even under ideal conditions, the determination of neutrino parameters needs experimental live times of the order of days to years for several laser frequencies, assuming a target of volume o…
Leptogenesis with conservation of B–L
Abstract We study leptogenesis in the decay of heavy Standard Model singlet fermions which carry lepton number, in a framework without Majorana masses above the electroweak scale. Based on M. C. Gonzalez-Garcia, J. Racker, N. Rius, JHEP 11 (2009) 079.
Status of the Gribov-Pontecorvo solution to the solar neutrino problem
We discuss the status of the Gribov-Pontecorvo (GP) solution to the solar neutrino problem. This solution naturally appears in bimaximal neutrino mixing and reduces the solar and atmospheric neutrino problems to vacuum oscillations of three active neutrinos. The GP solution predicts an energy-independent suppression of the solar neutrino flux. It is disfavoured by the rate of the Homestake detector, but its statistical significance greatly improves, when the chlorine rate and the boron neutrino flux are slightly rescaled, and when the Super-Kamiokande neutrino spectrum is included in the analysis. Our results show that rescaling of the chlorine signal by only 10% is sufficient for the GP so…
Enhanced lepton flavor violation with massless neutrinos: a study of muon and tau decays
Lepton flavor violating rates can be experimentally measurable even if the observed neutrinos are strictly massless. We make a study of the attainable rates for anomalous leptonic muon and tau number violating decays such as μ→eγ, μ→3e, τ→μγ, τ→eγ, τ→μμ+ μ−, τ→ ee+e−, τ→eμ+μ−, etc. as well as semileptonic lepton flavor violating tau decays such as τ→μπ0, τ→eπ0, τ→eη, etc. All muonic violating decays can be as large as the present limits from LAMPF, TRIUMF and PSI. The corresponding tau violating processes can all be at the limit of sensitivity of the upcoming τ factories.
A White Paper on keV sterile neutrino Dark Matter
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrin…
Constraints on an additional Z′ gauge boson versus the W, the top and the Higgs masses
Abstract We analyse the restrictions on the mass and the mixing of an additional Z′ gauge boson that follow from the recent LEP measurements taking into account standard model (SM) radiative corrections. We find that these restrictions depend sharply on the assumed values for the SM structural parameters, the most important of which are M w and m top . The constraints become stronger for lighter W and heavier top.
Tests of Anomalous Quartic Couplings at the NLC
We analyze the potential of the Next Linear $e^+e^-$ Collider to study anomalous quartic vector-boson interactions through the processes $e^+ e^- \to W^+W^-Z$ and $ZZZ$. In the framework of $SU(2)_L \otimes U(1)_Y$ chiral Lagrangians, we examine all effective operators of order $p^4$ that lead to four-gauge-boson interactions but do not induce anomalous trilinear vertices. In our analysis, we take into account the decay of the vector bosons to fermions and evaluate the efficiency in their reconstruction. We obtain the bounds that can be placed on the anomalous quartic interactions and we study the strategies to distinguish the possible couplings.
Determining the nuclear neutron distribution from Coherent Elastic neutrino-Nucleus Scattering: current results and future prospects
Coherent Elastic neutrino-Nucleus Scattering (CEνNS), a process recently measured for the first time at ORNL’s Spallation Neutron Source, is directly sensitive to the weak form factor of the nucleus. The European Spallation Source (ESS), presently under construction, will generate the most intense pulsed neutrino flux suitable for the detection of CEνNS. In this paper we quantify its potential to determine the root mean square radius of the point-neutron distribution, for a variety of target nuclei and a suite of detectors. To put our results in context we also derive, for the first time, a constraint on this parameter from the analysis of the energy and timing data of the CsI detector at t…
Solar and Atmospheric Four-Neutrino Oscillations
We present an analysis of the neutrino oscillation solutions of the solar and atmospheric neutrino problems in the framework of four-neutrino mixing where a sterile neutrino is added to the three standard ones and the mass spectra presents two separated doublets. Such scenarios allow for simultaneous transitions of solar $\nu_e$, as well as atmospheric $\nu_\mu$, into active and sterile neutrinos controlled by the additional mixing angles $\vartheta_{23}$ and $\vartheta_{24}$, and they contain as limiting cases the pure solar $\nu_e$-active and $\nu_e$-sterile neutrino oscillations, and the pure atmospheric $\nu_\mu\to\nu_s$ and $\nu_\mu\to\nu_\tau$ oscillations, respectively. We evaluate t…
Probing Planck scale physics with IceCube
Neutrino oscillations can be affected by decoherence induced e.g. by Planck scale suppressed interactions with the space-time foam predicted in some approaches to quantum gravity. We study the prospects for observing such effects at IceCube, using the likely flux of TeV antineutrinos from the Cygnus spiral arm. We formulate the statistical analysis for evaluating the sensitivity to quantum decoherence in the presence of the background from atmospheric neutrinos, as well as from plausible cosmic neutrino sources. We demonstrate that IceCube will improve the sensitivity to decoherence effects of ${\cal O}(E^2/M_{\rm Pl})$ by 17 orders of magnitude over present limits and, moreover, that it ca…